
Technical University of Catalonia

Department of Statistics and Operation Research

The Clustered Prize-collecting
Arc Routing Problem

By
Carles Franquesa i Niubò

Advisors
Julián Aráoz Durand and Elena Fernández Aréizaga

September 1st, 2008

iii

A la meva germana Marta, in memoriam.

v

List of errata

• pag. 7 - Terms size and order are interchanged.

• pag. 102 - Addition of x() to Equation (7.3), leading to

x(δ+(u)) = x(δ−(u)), u ∈ V (D) (7.3).

• pag. 110 - Mandatory constraint (7.9) has been transformed to an equa-
tion, leading to

x1
uv + x1

vu = zk, uv ∈ Ck, k ∈ {0, . . . , p} (7.9).

And consequently, in Equation (7.19) of the formulation (W2) of page 111.

Contents

1 Introduction 1

2 Background 7
2.1 Notation and Preliminaries . 7
2.2 Routing Problems . 10
2.3 Node Routing Problems . 12

2.3.1 The Traveling Salesman Problem (TSP) 12
2.3.2 The Graphical Traveling Salesman Problem 14
2.3.3 The Generalized Traveling Salesman Problem 15
2.3.4 The Prize-collecting Traveling Salesman Problem 15

2.4 Arc Routing Problems (ARPs) 15
2.4.1 The Chinese Postman Problem (CPP) 16

The Undirected CPP (UCPP) 16
The Directed CPP (DCPP) 18
The Mixed CPP (MCPP) 19
The Windy CPP (WPP) 19

2.4.2 The Rural Postman Problem (RPP) 20
The Undirected RPP (URPP) 20
The Directed RPP (DRPP) 21
The Mixed RPP (MRPP) 22

2.4.3 The Windy General Routing Problem (WGRP) 22
2.4.4 The Clustered RPP (CRPP) 23

2.5 ARPs with Profits . 23
2.5.1 The Prize-collecting RPP (PRPP) 24

3 The Clustered Prize-collecting Arc Routing Problem 27
3.1 Definition . 28
3.2 Analysis of the Problem . 31

3.2.1 Graph transformation: CPARP on Kn 32
3.2.2 Edge Classification for the CPARP 33

According to the D-parity of its vertices: De, Do and Dm 34
According to the clusters it connects: H1 and H2 34
Edges in De ∩H2 of lowest cost: M0 34

3.2.3 Properties of the CPARP 36
Feasibility Conditions . 36
Dominance Relations . 36

3.3 Definition of Variables . 39
3.3.1 Variables associated with the clusters, zk’s 39

vii

viii CONTENTS

3.3.2 Variables associated with the edges, xe’s and ye’s 39
3.4 ILP Formulation . 40

3.4.1 Objective Function . 40
3.4.2 Cocircuit Inequalities . 40
3.4.3 Connectivity Constraints 41
3.4.4 ILP Formulation . 42

4 An Algorithm for the CPARP 47
4.1 Linear Relaxation . 48

4.1.1 Initial Parity Inequalities 49
4.1.2 Initial Connectivity Inequalities 51
4.1.3 A Formulation for the Initial LP Relaxation 53

4.2 Separation of Inequalities . 53
4.2.1 Separation of Connectivity Inequalities 55
4.2.2 Separation of Cocircuit Inequalities 59

Case |S| = 1 . 62
Heuristic Cocircuit Separation for the CPARP 63

4.3 Branch & Cut Algorithm . 66

5 Heuristic Approaches 69
5.1 Constructive heuristics . 70

5.1.1 Merging clusters heuristic 70
5.1.2 Spanning tree heuristic 74

5.2 Local Search . 76
5.2.1 Shortcuts . 77
5.2.2 Interchanges . 77

6 Computational Results 79
6.1 Original Data Graphs . 80

6.1.1 Albaida Instances . 80
6.1.2 Christofides Instances . 81
6.1.3 Hertz Degree Instances 82
6.1.4 Hertz Random Instances 83
6.1.5 Hertz Grid Instances . 84

6.2 Results . 85
6.2.1 Results of the LP Relaxation 85
6.2.2 Results at the Root Node of the Exact Algorithm 90
6.2.3 Results of the Exploration 91

6.3 The CPARP algorithm for the RPP 93

7 The Windy CPARP 99
7.1 Definition of the WCPARP . 100
7.2 Formulation of the WCPARP with integer variables 102
7.3 Formulation of the WCPARP with binary variables 103

7.3.1 Graph transformation: WCPARP on Kn 103
7.3.2 Properties of the WCPARP 105
7.3.3 Definition of variables . 108
7.3.4 Objective Function . 109
7.3.5 ILP01 Formulation . 110
7.3.6 Algorithm . 112

CONTENTS ix

Initial Formulation . 112
Separation of Inequalities 113

7.4 Computational Results . 113
7.4.1 Solving the WCPARP . 113
7.4.2 Solving the CPARP with the WCPARP algorithm 118

8 Conclusions 123

A The filògrafus Application 127
A.1 Database . 128
A.2 Data Structures . 128
A.3 Dynamic Link Libraries . 130
A.4 Workflow . 130

A.4.1 Obtaining an operable graph 131
A.4.2 Obtaining a preprocessed graph 136
A.4.3 Solving the instance . 137

Chapter 1

Introduction

Various types of routing problems have been studied since the eighteenth cen-
tury. Traditionally, these problems are stated in terms of graph problems in
which some type of walk that satisfies certain conditions is sought. When look-
ing for a walk that satisfies certain conditions, there are two different problems
that one can address. The first one is the existence (or decision) problem of
knowing if a route with the desired characteristics exists. Provided that such a
walk exists, one can also face the optimization problem that consists of finding
some optimal route among the ones that satisfy the required conditions.

Routing problems can be classified into two large classes depending on
whether the conditions are stated on the nodes or the links of the considered
graph. Problems of the first type are referred to as node routing problems,
whereas problems of the second type are referred to as arc routing problems.
Examples of node routing problems are all the ones in which vehicles provide
service on the nodes of the graph, like it happens in pick-up/deliveries of goods.
On the other hand, examples of arc routing problems are garbage collection,
mail delivery, road sweeping, maintenance of electrical or telephone networks,
etc., and, in general, all types of problems in which vehicles must provide service
on the links of a graph. Various public transportation problems belong both to
the first and the second types.

Routing problems can also be classified according to the type of graph where
they are defined. In particular, we can consider undirected graphs, where the
links are edges associated with unordered pairs of vertices so that they can be
traversed in both directions, directed graphs, where the links are arcs associated
with ordered pairs of vertices and they can be traversed only in one direction,
mixed graphs, where the links can be both edges and arcs, and windy graphs,
which are undirected graphs where the cost function associated with the edges is
not symmetric, so that the cost of traversing one edge in one direction need not
be the same than the cost of the traversal of the edge in the opposite direction.

1

2 CHAPTER 1. INTRODUCTION

The study of node routing problems goes back to 1856 with the works of
Kirkman [75], who established sufficient conditions on a polyhedral graph for the
existence of a cycle that traversed exactly once all the nodes of the graph, and of
Hamilton [68], who studied various problems related to cycles in graphs. These
studies are the precursors of the most relevant combinatorial problem nowadays,
which is the so called Traveling Salesman Problem (TSP), that consists of finding
a minimum length route that visits each node of a complete graph exactly
once. In terms of optimization problems, node routing problems belong to class
NP-hard. This means that, unless P = NP, there can be no algorithm that
guarantees obtaining optimal solutions in times polynomially bounded on the
size of the instances. Due to the theoretical interest and the enormous range
of applications of routing problems, there is a vast literature on related topics
that have appeared in the last fifty years. There are several books fully focused
on the TSP, like the classical one edited by Lawler, Lenstra, Rinnooy-Kan and
Shmoys [80], or also the one by Gutin and Punnen [67], and more recently by
Applegate et al. [3].

A generalization of the TSP are Traveling Salesman Problems with Profits,
otherwise known as Profitable Tour Problems. In these problems there is not a
given subset of vertices to be visited. Instead, there is a profit associated with
each serviced vertex. Different versions of Profitable Tour Problems have been
studied. A first review of 1989 of the related problems and works can be found
in Balas [14]. More recently, in Balas [15], and the surveys of Feillet, Dejax and
Gendreau [52].

There are also many other types of node routing problems where additional
considerations come into play. These include capacity on the vehicles, time win-
dows and precedence constraints. Thorough surveys on node routing problems
can be found in the works by Laporte [76], and in the book edited by Toth and
Vigo [104] dedicated to Vehicle Routing Problems.

There also exists a large literature on arc routing problems. Comprehensive
surveys are the ones of Assad and Golden [13], and Eiselt, Gendreau and Laporte
[49]. A more recent monograph is the book edited in 2000 by M. Dror [45]. The
first reference of the mathematical study of an arc routing problem is from 1736.
It can be found in the work of Euler [50], who stated necessary and sufficient
conditions for the existence of a closed route that traversed exactly once all the
links of a graph. These conditions were later extended in 1873 to non closed
routes by Hierholzer [70]. The seminal work in arc routing optimization is that
of Guan [65], a Chinese mathematician who in 1962 addressed the so called
Chinese Postman Problem (CPP), that consists of finding a minimum length
route that traverses each link of a graph at least once. As opposed to most
routing problems this problem is polynomially solvable both on an undirected
graph [48] and on a directed graph [48, 92].

The Rural Postman Problem (RPP) is the generalization of the Chinese
Postman Problem that results when the arcs that must be traversed need no
longer be all the links of the graph, but a subset of them, called required links.
This problem was proposed in 1974 by Orloff [92] and is NP-hard in all its

3

versions. It has been studied by numerous authors. Among the most relevant
contributions for the undirected case we must cite the works by Christofides
et al. [28] who proposed the LP based algorithm for the RPP, Corberán and
Sanchis [40], who have studied its polyhedral structure, and Ghiani and Laporte
[58], who characterized the edges that can be traversed two times in the optimal
solutions and proposed a new model based on this characterization. The Windy
Rural Postman Problem has been studied in Benavent et al. [23], where a
heuristic is proposed and in Benavent et al. [22], where heuristics and lower
bounds are considered. Other recent works on arc routing problems are those
of Corberán, Mota and Sanchis [36] that compare two different formulations
for arc routing problems, and Corberán, Plana and Sanchis [37] that introduce
zigzag inequalities, which is a new class of inequalities for arc routing problems.

The most general routing problem is the so called General Routing Problem
(GRP). In the GRP, demand can be located both at some vertices or links of
the graph so there exist both required vertices and links. The GRP was first
proposed by Orloff [92]. It has also been studied by Corberán and Sanchis [41],
where its polyhedral structure is studied, and by Corberán, Mejía, and Sanchis
[35]. The GRP has also been studied by Corberán, Letchford and Sanchis [33]
where a cutting plane algorithm is proposed.

As with any other type of routing problems, the windy version is the most
general version of the GRP. This problem has been studied in the doctoral
thesis of Plana [99], and there are recent relevant works, whose results also
apply to other families of arc routing problems, like those of Corberán, Plana,
and Sanchis [38, 39]. There are also many other types of arc routing problems
where capacity on the vehicles, time windows or other type of considerations
must be taken into account.

Arc routing problems with profits can be seen as the arc routing counterpart
of Traveling Salesman Problems with Profits. As opposed to classical arc routing
problems, in arc routing problems with profits there is no specific link subset to
be serviced, but there are profits associated with the links that are serviced (in
addition to the costs of the links). That is, the set of required links is not given
and it must be decided, together with the route that will serve the selected links,
so as to maximize the net profit. To the best of our knowledge, the literature on
arc routing problems with profits is scarce. We are aware of the work of Deitch
and Ladany [44] where the problem is transformed into a node-routing one, and
the work of Feillet, Dejax and Gendreau [51] where a limit, possibly greater
than one, is given on the number of times the visit of an edge is beneficial.

Prize-collecting Arc Routing Problems (PARPs) is a family of arc routing
problems with profits that has been proposed recently. While in general, in
arc routing problems with profits, the profit of every serviced edge can be col-
lected as many times as the link is serviced, in PARPs it is supposed that the
profit of each serviced link is collected at most once, when the link is serviced,
independently of the number of times that it is traversed.

4 CHAPTER 1. INTRODUCTION

There are several works on PARPs, all of which exploit the fact that only the
first traversal of edges is beneficial. Aráoz, Fernández and Zoltán [11] introduced
the PARPs and studied some properties that gave rise to a formulation in terms
of a Integer Linear Programming (ILP) problem. The basic version of a PARP,
which is called the Prize-collecting Rural Postman Problem is studied by Aráoz,
Fernández and Meza [10] where an exact algorithm is proposed.

In this thesis we address the Clustered Prize-collecting Arc Routing Problem
(CPARP) defined on an undirected graph. The CPARP is a PARP where,
in addition, we consider the components (clusters) defined by the edges with
demand, and for each cluster we require that either all its links are serviced
or no link of the cluster is serviced. To the best of our knowledge, so far the
CPARP has not been studied in the literature. Many results of this thesis have
been presented in Conferences [8, 7, 5] and are summarized in a paper which
has been conditionally accepted for publication [6].

The motivation for studying the CPARP comes not only from its theoretical
interest but also from its potential applications. PARPs appear in the context of
private companies looking to maximize operational profits, so that demand edges
will not be serviced unless they yield a profit to the company, and each demand
edge would be serviced at most once. In the case of garbage collection, recycling
goods collection, or street cleaning, among others, while it is not acceptable that
only a part of a given neighborhood is serviced, the whole neighborhood might
not be profitable for the servicing company.

Therefore, potential applications of the CPARP take place in such contexts.
Examples arise, for instance, in several cities of Minnesota (US) or in Buenos
Aires (Argentina) where garbage collection companies bid to the municipality
for parts of the city, so that, depending on the area, service is given by a
different company. Another potential application is mail delivery in Germany
where, recently, postal services have been privatized, so that companies have
the possibility of servicing different districts. Yet, another potential application
comes from the European Community directive for the collection of electric
and electronic equipment (WEEE). According to this directive, each producer
should be responsible for financing the management of the waste from his own
products. It is thus natural that the collecting activities through the drop-off
points be given to subcontractors which, in turn, bid for the collection of the
different areas.

Another source of potential applications comes from classical arc routing
problems, by interpreting the profit of each required edge as the priority for
servicing it. Thus, the sum of the profits of the served components can be seen
as the overall priority of the served components. In this setting we may allow
not to serve some required edge, but we want to maximize the overall priority of
the served components. Hence, the CPARP consists of finding a set of required
components and an Eulerian circuit with maximum net overall priority.

To some extent, the problem that we address is related to the Clustered

5

Rural Postman Problem (CRPP) studied by Dror and Langevin [46] where the
connected components defined by the arcs with demand must be completely
serviced before servicing any other component. However, there are several dif-
ferences between the CPARP and the CRPP. The first one is that CRPP is an
arc routing problem, but not a PARP. The second one is that CRPP is stated
on a directed graph, whereas we consider the CPARP on an undirected graph.
Finally, in the CRPP of [46] it is required that all components are serviced,
and that a component is completely serviced before servicing any other compo-
nent. This third constraint is used then for making possible to transform the
problem into a Generalized Travelling Salesman Problem. In the CPARP we
release these requirements. On the one hand, we do not require to service all
the components. On the other hand, we allow not servicing all the edges of a
component consecutively if this results in a better solution.

As we will see, when we pose the additional requirement that either all the
links of a cluster are serviced or no link of the cluster is serviced, we can prove
some dominance conditions that otherwise do not hold. These properties allow
some transformation of the original graph that results in a stronger formulation
of the problem. This formulation has an exponential number of inequalities of
two types: Inequalities that guarantee the connectivity of the traversal with the
depot, and inequalities that guarantee the even degree of the nodes, which are a
particular case of the so called cocircuit inequalities of Barahona and Grötschel
[17].

Due to the exponential number of constraints it is important to address the
separation problems for both types of inequalities. As we will see, in both cases
we can solve exactly the separation problem. We address the exact separation of
connectivity inequalities with an algorithm that is an adaptation to the CPARP
of the exact algorithm of Belenguer and Benavent [18]. Although the cocircuit
inequalities can be separated exactly in polynomial time, as can be seen in
the works of Letchford [82] and Aráoz, Fernández and Meza [10], for speeding
up the process we propose a heuristic separation that gives very good results.
This enables us to propose an efficient LP based iterative scheme that starts
with a small number of inequalities and at each iteration reinforces the current
formulation with violated inequalities.

We also study heuristics for generating feasible solutions to the CPARP
whose values can be compared with the upper bounds associated with the op-
timal LP solution. The heuristic that gives the better results is based on the
heuristic of Fernández et al. [53] for the RPP. It is based on building a spanning
tree on selected subsets of clusters, and then adding ad hoc edges so as to obtain
an Eulerian graph.

For the sake of completeness, we propose an exact branch and cut algorithm
to optimally solve the CPARP. At the root node we obtain an upper bound by
solving the LP relaxation of the model and a lower bound with a heuristic which
exploits the information of the optimal LP solution.

6 CHAPTER 1. INTRODUCTION

For analyzing the performance of all the proposed algorithms we have run
a series of computational experiments with a set of benchmark instances. As
we will see, the numerical results are very satisfactory. They indicate that in
most cases (more than 75%) the instances can be optimally solved at the root
node of the search tree. The remaining instances required, in general, very few
nodes to explore the search tree. All but two instances of the 118 considered
ones were optimally solved in less than two minutes of cpu time.

The thesis is structured as follows. Chapter 2 introduces some background
concepts and gives an overview on different types of routing problems. In Chap-
ter 3, we present the CPARP, study its properties and propose a formulation
as an ILP. Chapter 4, addresses the separation problem for the two exponential
families of inequalities, and presents the iterative LP solver algorithm for solving
the LP relaxation of the CPARP and the exact branch and cut algorithm. In
Chapter 5 we present the heuristics that we have considered, whereas in Chapter
6 we describe the computational experiments with the proposed algorithms and
we analyze the obtained numerical results. In Chapter 7 we study the Windy
CPARP (WCPARP). As with other arc routing problems the windy version of
the CPARP generalizes all possible versions of the problem. We assume that
the profit function on the demand edges is symmetric, but the cost function
associated with the traversal of edges is asymmetric. Several properties that
hold when the cost function on the edges is symmetric, no longer hold for the
WCPARP. In Chapter 7 we propose two formulations for the WCPARP and
we give some preliminary computational results obtained with one of them. Fi-
nally, the thesis ends in Chapter 8 with some conclusions and comments on
future research.

We have also included an appendix where we present the filògrafus. The
filògrafus is an user friendly application developed entirely by the author of this
dissertation, that gives a visual and interactive interface for different types of
optimization problems in graphs.

Chapter 2

Background

Basically, two main parts compose this chapter. Some notation for the problem
and preliminaries on the theory of polyhedra are presented in the first section.
Along the rest of the chapter the best known routing problems with one vehicle
are presented. As a matter of fact, the family of such problems is wide enough
to go beyond the scope of this dissertation. For this reason, we only present
the ones that are usually taken as a reference in the literature, as well as those
that in some way can be seen as precursors of the CPARP, which is the object
of this thesis. We will state each problem on a graph, and we will recall some
of their most relevant characteristics.

2.1 Notation and Preliminaries

Some notation and nomenclature is introduced in this section. We also give
some basic concepts and describe some techniques that will be used later on.

An undirected graph G of order n and size m is denoted as G = (V,E)
where V is a set of vertices and E is a multiset set of edges, or unordered pairs
of vertices of V , with n = |V | and m = |E|. The undirected complete graph of
n vertices, denoted Kn, is the graph whose edge set E has all possible pairs of
the given n vertices. Instead, when an order is implicit on the edges, a directed
graph (or digraph) D is denoted as D = (N,A). In this case, its vertices are
called nodes, N is the set of nodes, and the ordered pairs linking these nodes,
the elements of A, are called arcs. A mixed graph has both kinds of links, arcs
an edges, and is denoted by G = (V,E ∪A).

Unless otherwise stated we assume that we work on an undirected graph.
Thus no order is implicit on the edges e = uv = vu ∈ E, u, v ∈ V .

7

8 CHAPTER 2. BACKGROUND

We may refer to the vertices of the graph G by V (G) and to its edges by
E(G). We use the notation δ(S) = {uv ∈ E| u ∈ S and v ∈ V \ S} for making
reference to the cut of the subset of vertices S ⊂ V and S 6= ∅. When S = {u},
u ∈ V , i. e., |S| = 1, then the cut of vertex u is δ(u) = {uv ∈ E| v ∈ V } and
the degree of u is |δ(u)|. From a graphical point of view, the cut of a subset are
the edges in its frontier. For making reference to some edges of the cut of a set
of vertices S we will also use the notation δB(S) = δ(S) ∩ B, B ⊆ E. Thus
δ(u) = δE(u). Also, for all subsets S ⊆ V , |S| ≥ 2, we denote γ(S) = {e = uv ∈
E|u, v ∈ S} the set of edges that link two vertices of S.

Finally, for a given a real function defined on the set of edges f : E → R
that associates a real number fe ∈ R with each edge e ∈ E, we use the compact
notation,

f(B) =
∑
e∈B

fe, B ⊆ E.

A walk from vertex u to vertex v on a graph is an alternate sequence of
vertices and edges starting in u and ending in v. The edges connect each pair
of consecutive vertices in the sequence. A walk of length l is represented by
W (v0, vl) = v0, e1, v1, e2, v2, . . . , el, vl, where ei = (vi−1, vi). When v0 = vn it is
a closed walk. Throughout, the term tour is used for making reference to closed
walks. When no edge is used more than once, the walk is said to be simple. A
path is a simple walk. A cycle is a simple tour with no repetition of vertices,
except for the first one.

A set H ⊂ Rn is called halfspace if there is a vector a ∈ Rn and a scalar a0

such that H = {x ∈ Rn | aTx ≤ a0}. We say that H is the halfspace defined
by the inequality aTx ≤ a0, and we also say that if (a 6= 0) the hyperplane
{x ∈ Rn | aTx = a0} is the hyperplane defined by aTx ≤ a0.

An inequality aTx ≤ a0 is valid with respect to S ⊂ Rn if S ⊂ {x ∈
Rn | aTx ≤ a0}, i.e., is S is contained in the halfspace defined by aTx ≤ a0.
A valid inequality aTx ≤ a0 for S is called supporting if S ∩ {x ∈ Rn | aTx =
a0} 6= ∅.

A polyhedron is the intersection of finitely many halfspaces, i.e. every poly-
hedron P can be represented in the form P = {x ∈ Rn | Ax ≤ b}, being
A ∈ Rm×n and b ∈ Rn. A bounded polyhedron (i.e. a polyhedron P such that
P ⊂ {x ∈ Rn | ‖ x ‖ ≤M} for some M > 0 is called a polytope. Polytopes are
sets ∈ Rn which are the convex hulls of finite number of points. Every polytope
P can be written as P = {x ∈ Rn | Ax ≤ b} , and as P = conv(S), S ⊂ Rn, |S|
finite.

A subset F of a polyhedron P is called a face of P if there exists an inequality
aTx ≤ a0 valid with respect P such that F = {x ∈ P | aTx = a0}. We say
that the inequality aTx ≤ a0 defines F . A face F is called proper if F 6= P .
A facet F of a polyhedron P is a proper, nonempty face (i.e. a face satisfying

2.1. NOTATION AND PRELIMINARIES 9

∅ 6= F 6= P) which is maximal with respect to set inclusion.

The above definition of a polyhedron is used when analyzing a Linear Pro-
gramming (LP) problem. This is, the set of feasible solutions of an LP problem
max{cTx | Ax ≤ b, x ≥ 0} is a polyhedron P = {x ∈ Rn | Ax ≤ b, x ≥ 0}.
In order to apply linear programming techniques, polyhedra have to be given
in the form {x ∈ Rn | Ax ≤ b}. For this purpose valid inequalities and in
particular, facets are therefore of particular importance.

Branch and cut is a technique used to solve ILP problems. It is a branch
and bound method with some additional ingredients. Next we give an overview
of this technique. Further details on the branch and cut are given in Padberg
and Rinaldi [94], Jünger, Reinelt and Rinaldi [72], Jünger, Reinelt and Thienel
[86] and Caprara and Fischetti [27].

The linear relaxation problem of an Integer Linear Programming (ILP) pro-
blem is the LP problem obtained from the ILP by dropping the condition that
all variables have to be integers. Therefore, the optimal value zLP of the relax-
ation (in the maximization case) is an upper bound to the optimal zILP of the
ILP program, i.e., zLP ≥ zIP .

If the number of constraints of an ILP problem is small enough, a classical
solution method is via branch and bound using linear programming bounds. We
suppose that the integer variables are indexed by a set E and e is an element of
E (i.e. e ∈ E). First, we solve the linear relaxation, if the optimal solution x∗ is
integral we are done. Otherwise, we choose a variable xe with fractional value
x∗e in the linear relaxation problem to build two new LP problems. In the first
problem we add the constraint xe ≥ dx∗ee (where dx∗ee is the smallest integer
greater than x∗e) and in the second problem we add the constraint xe ≤ bx∗ec
(where bx∗ec is the greatest integer smaller value than x∗e). The branch and
bound method continues building new LP problems in a tree structure with a
node for each problem. A branch is cut off (fathomed) at a node either when its
optimal solution is integer (improving the current optimal integer solution) or
when its optimal solution value is lower or equal than the lower bound. When
the number of linear constraints is large, that is, its size depends exponentially
on some parameter that depends polynomially on the size of the problem, the
constraint system cannot be given to an LP solver and a cutting plane technique
has to be used to solve the linear program.

Let I be an ILP problem and L be the LP problem consisting of its relaxation,
possibly strengthened with additional valid inequalities, having a very large
number of constraints (that is, Ω(2n)). Let zI and zL be their optimal solution
values. Let us assume that we want to maximize the objective function. The
cutting plane works as follows. For an iteration i, i > 0, let Li be an LP problem
consisting of a subset of a reasonable number of constraints in L (that is, O(nk)
for some k ∈ Z+). Solve Li, which yields an optimal solution xi. If this solution
is feasible for the ILP problem I, then it is optimal for I. Otherwise, we solve the
separation problem that consists in either finding one constraint of L violated by

10 CHAPTER 2. BACKGROUND

xi, or proving that such constraint does not exist. If some violated constraints
are returned, Li+1 is obtained by adding them to Li. Then we solve Li+1 and
repeat the procedure, otherwise terminate. Note, therefore, that for every i > 0,
if zi is the optimal value of Li, we have zi ≥ zi+1 ≥ zL ≥ zI .

We usually end up with an optimal solution to the ILP problem I or to its
linear relaxation L, but sometimes the solution to the separation problem is
not exact. That is, it may do not return a violated constraint when there is at
least one. In these cases, let us denote L∞ the LP problem in which the cutting
plane technique has terminated with a solution not optimal for I. Then, x∞ is
not integer. Thus, we can split the problem into two new problems by adding
upper and lower bounds to a variable x∞e whose current value is fractional, as
is done in a branch and bound algorithm. This process is called branching.
We proceed by recursively solving (with the cutting technique explained above)
each new problem, and controlling the enumeration tree as a branch and bound
algorithm. The method combining both techniques is called a branch and cut.

Enumeration and cutting plane techniques benefit from each other: on the
one hand, the bound produced at each node of the enumeration tree is better
than in a branch and bound algorithm, because new inequalities are added
to the formulation of the corresponding subproblem. On the other hand, the
separation algorithm takes advantage from the branching process as it produces
a perturbation on the fractional solution that could not be cut away by an
inequality.

2.2 Routing Problems

Routing Problems are optimization problems stated on graphs whose solutions
consist of tours. Besides the graph, a real cost function on the edges is given.
Usually, the tour must fulfill some problem specific requirements while minimiz-
ing the total cost of its edges.

In routing problems a variable is associated with each edge indicating the
number of traversals of it in the solution tour. In this way a tour is represented
as a point x ∈ Zm, since the number of traversals of each edge must be integer
in order to the solution be feasible.

Given a routing problem on a graph G, we denote the convex hull of all
feasible tours, or feasible solutions, by P (G), that as can be proved is a polyhe-
dron. When the variables associated with the edges that make part of the tours
are binary, the polyhedron is a polytope since it is bounded. Instead, when the
variables associated with the edges that make part of the tours represent the
unbounded number of times that an edge is traversed, then the polyhedron of
the problem is unbounded.

2.2. ROUTING PROBLEMS 11

Routing problems may be classified according to several different criteria.
Mainly, we distinguish among them depending on whether the requirements
are stated on the nodes or on the edges of the graph. Hereby, we obtain the
following classification:

• Node Routing Problems When the conditions that must be satisfied are
established on the vertices.

• Arc Routing Problems When the conditions are stated on the links.

• General Routing Problems, When the requirements are stated both on the
vertices and the links of the graph.

Alternatively, we may also classify routing problems depending on the type
of graph on which the problem is stated. From this point of view we have:

• Undirected problems When the problem is stated on an undirected graph.

• Directed problems When the problem is stated on a directed graph.

• Mixed problems When the problem is stated on an mixed graph, i.e. when
there are both kinds of links in the graph.

One more type of problem can be considered: Windy problems. Windy
problems are stated on undirected graphs, but the cost of the edges depends on
the direction of their traversal. The interest of these problems is based on the
fact that windy problems constitute a generalization of all the others.

Other extensions not considered in this dissertation are problems with multi-
ple vehicles with limited capacities, or time windows. In this thesis we work with
just one vehicle. Problems with k vehicles have been studied by Frederickson
[56], Pearn [96], and Ahr and Reinelt [1].

We also assume there are no capacity constraints nor time windows. Such
extensions could be studied in future research. Problems with capacitated vehi-
cles were first formulated by Christofides [28] and Golden and Wong [59]. These
problems have been analyzed by Assad, Golden, and Pearn [12], and by Be-
lenguer and Benavent [18] that proposed an exact branch and cut algorithm.
Exact algorithms for capacitated problems have also been proposed by Welz
[105], Hirabayashi, Saruwatari and Nishida [71], and Greistorfer [61].

Other problems are related to the scheduling of the service times. Problems
with deadline classes have been solved with exact algorithms by Letchford and
Eglese [84]. And also problems considering k vehicles with time windows have
been treated by Clark and Wright [32].

12 CHAPTER 2. BACKGROUND

With respect to the transformation of arcs routing problems into node rout-
ing problems, some works have been published among which we mention the
work of Assad, Golden, and Pearn [97] related to the Capacitated Arc routing
Problem or the work related to the Clustered Rural Postman Problem presented
by Dror and Langevin [46]. As can be observed, the variety of routing problems
is prolific.

Except for the Chinese Postman Problem (CPP) all the other problems
described in this chapter are NP-hard problems. This means that, unless P =
NP, there is no algorithm that guarantees to obtain an optimal solution to the
problem for any instance of size n in polynomially bounded time, that is a time
in O(nk) for some k ∈ Z+.

2.3 Node Routing Problems

Given that this dissertation does not focus on node routing problems, only
four problems of this family are presented in this section. First, the Traveling
Salesman Problem (TSP) and the Graphical Traveling Salesman Problem are
studied, since these are possibly the two most emblematic routing problems.
The third node routing problem that we study here is the Generalized Traveling
Salesman Problem. The Generalized TSP can be seen as the node version of
the Clustered Prize-collecting Arc Routing Problem, which is the object of this
dissertation. In this sense, it might be considered as a precursor. We end the
section with the Profitable Tour Problem, that is the TSP with profits, when
both the cost function on the edges and the profit function on the vertices are
present in the objective function. Due to its theoretical interest we will get into
some detail for the first one, the TSP.

2.3.1 The Traveling Salesman Problem (TSP)

Definition 2.1 The Traveling Salesman Problem (TSP)
Given the complete graph of n vertices, Kn, and a positive real function of costs
defined on its edges c : E(Kn)→ R+, the Traveling Salesman Problem is to find
a cycle with the lowest cost, visiting each vertex exactly once.

Note that a solution for the TSP consists of a selection of n edges in the complete
graph.

Therefore, the solutions of the TSP are cycles. Different formulations of this
problem define a binary decision variable associated with each edge e ∈ E, to
represent whether or not edge e is used in a solution. In this way, a cycle x can
be represented by a vector of binary elements of dimension m = |E| .

2.3. NODE ROUTING PROBLEMS 13

x = (xe|e ∈ E) ∈ {0, 1}m.

In order to establish a set of valid inequalities for the description of the poly-
tope TSP (G) we must consider properties that all solution cycles must fulfill:

x(δ(u)) = 2, u ∈ V (2.1)
x(γ(S)) ≤ |S| − 1, S ⊂ V (2.2)

xe ∈ {0, 1}, e ∈ E (2.3)

Observe that all tours satisfy that all their vertices have a degree of 2. This
is what is imposed through the parity constraints (2.1), which also force the
solutions to be composed by cycles. Another property that solution tours must
satisfy is being connected. Inequalities (2.2) prevent solution tours from forming
disconnected cycles. In fact, there are alternative ways to forbid the formation
of disjoint cycles. However, this way is simple enough: Since in a cycle the num-
ber of edges is exactly the same than the number of vertices, constraints (2.1)
together with constraints (2.2) prevent the cycles of length smaller than n = |V |.

The integrity constraints (2.3) must be posed since ignoring them may lead to
fractional solutions, thus not feasible. In order to avoid these fractional values,
we must identify inequalities that characterize the polytope associated with
the problem. A great effort has been done, and still is being done nowadays,
to achieve this, and to relate the polytope associated with the TSP to other
polyhedra which are well characterized. Two of the simplest and best known
ones are mentioned next.

For example, the relation between tours and 1-trees is well-known. Let us
recall that a 1-tree, T1, of G, consists of a spanning tree of G plus an additional
edge. Since 1-trees are connected structures with n vertices and just one cycle,
any TSP tour is also a 1-tree. On the other hand the polytope of all 1-trees of
G, T1(G), is fully described by a set of inequalities that are valid for the TSP.
Thus, TSP (G) ⊂ T1(G).

Similarly, we can relate TSP (G) with the perfect 2-matching polytopeM2(G).
A perfect 2-matching for a graph G is a subset of edges such that each vertex
in some edge of a M2 is incident to exactly 2 edges of M2. Therefore, we can
see that tours for the TSP are in turn perfect 2-matchings. So,

TSP (G) ⊂ (T1 (G)∩M2 (G)).

With respect to the computational complexity, despite an intensive study
by mathematicians, computer scientists, operations researchers, and others, for
more than three decades, it remains an open question whether or not a general
solution method exists to solve the TSP in polynomial time. In 1972, Karp
proved that TSP is an NP-hard problem [74].

14 CHAPTER 2. BACKGROUND

It has been a major open problem for almost three decades to improve upon
the best up to now approximation factor 3/2 given in 1976 by Christofides [29].
A large literature exists on this problem. Extensive monographs can be found
in [3, 29, 63, 79].

2.3.2 The Graphical Traveling Salesman Problem

The Graphical Traveling Salesman Problem is a variant of the TSP introduced
by Fleischmann [55] and Cornuèjols, Fonlupt and Naddef [43] in which the graph
needs not be complete. In many applications this is more realistic than its
predecessor since most often the underlying graph where the problem is stated
is not a complete graph.

Definition 2.2 The Graphical Traveling Salesman Problem
Given a connected undirected graph G = (V,E), and a positive real function
of costs defined on its edges c : E → R+, the Graphical Traveling Salesman
Problem is to find a tour with the lowest cost visiting each vertex at least once.

Note that a solution for the Graphical TSP may duplicate some edges of G.

Hence, tours may be represented by

x = (xe|e ∈ E) ∈ Zm,

since we can not assume solutions to traverse just once each edge.

Now, xe represents the number of times that the edge e is used in the tour
x. All tours for the Graphical TSP can be represented as vectors x that satisfy

xe ≥ 0, e ∈ E (2.4)
x(δ(u)) ≡ 0 (mod 2) u ∈ V (2.5)

x(δ(S)) ≥ 2 S ⊂ V (2.6)
xe ∈ Z

Inequalities (2.4) are called trivial, and do not need explanation. The parity
inequalities (2.5) force vertices to be visited through an even number of traver-
sals of edges. Observe, however, that in this form they are not linear. And the
connectivity inequalities (2.6) impose that the cut of any subset of vertices must
have at least two edges for being connected with the other vertices of the graph.

Let us point out that the convex hull of the feasible solutions of Cons-
traints (2.4)-(2.6), that we call Graphical_TSP (G), is an unbounded poly-

2.4. ARC ROUTING PROBLEMS (ARPS) 15

hedron, since if an edge e is traversed in a feasible solution tour T , any other
tour obtained by adding to T an even number of traversals of e will also be
feasible. Furthermore, the polytope of the TSP, TSP (G), is a facet of the poly-
hedron Graphical_TSP (G). This is,

TSP (G) = Graphical_TSP (G) ∩ {x ∈ Rm|x(E) = n}.

The complexity of the Graphical TSP is closely related to that of the TSP
and therefore, the Graphical TSP is also an NP-hard problem.

2.3.3 The Generalized Traveling Salesman Problem

The Generalized Traveling Salesman Problem assumes that the set of vertices of
a given graph has been partitioned in a collection of sets. The objective for the
Generalized TSP is to find a minimum cost tour which visits exactly one vertex
of each set. When each set of vertices has cardinality 1 the Generalized TSP
reduces to the classical TSP. The Generalized TSP has been studied extensively
by Laporte, Mercure, and Norbert [77, 78], and Noon and Bean [88, 89]. A more
recently work can be found in Fischetti, Salazar and Toth [54].

2.3.4 The Prize-collecting Traveling Salesman Problem

The Prize-collecting Traveling Salesman Problem (PTSP) is the TSP with prof-
its on the vertices. Several approaches have been done to this problem.

In 1989, the PTSP was introduced by Balas [14, 15]. Nevertheless, the profit
objective is stated as a constraint. The aim is to find a circuit that minimizes
travel costs and whose collected profit is not smaller than a preset value.

Dell Amico, Maffioli and Värbrand [2] stated the PTSP, which is a gener-
alization of the TSP, where it is not necessary to visit all vertices. The overall
goal is the simultaneous optimization of the collected profit and the travel costs.

Recently, Feillet Dejax and Gendreau [52] modelled different approaches and
compared exact and heuristic solution techniques.

2.4 Arc Routing Problems (ARPs)

Arc Routing Problems (ARPs) deal with finding out least cost traversals in
graphs, taking into account some constraints imposed on some links of the graph.
A good overview of the area of arc routing can be found in the work by Assad

16 CHAPTER 2. BACKGROUND

and Golden [13], although from 1995. An extensive monograph on this type
of problems can also be found in the book by Dror [45], making a compilation
from different authors.

Problems like planning the school transportation routes, post mail delivery,
garbage pickup, road network maintenance, or the irrigation in the agriculture
can be modelled as arc routing problems, see the paper by Bodin and Kursh [25].
And there is an increasing interest of such models in the field of telecommuni-
cation networks. Nevertheless, more humble uses might also feed the theory of
ARPs. Take for instance the pastime pages of any magazine, when the problem
is to draw some figure without raising the pencil of the paper.

In the next sections we will describe the ARPs with just one vehicle. The
definitions raise in a natural way depending on whether demand for service is
in all links (edges or arcs) of a graph or just in some of them.

2.4.1 The Chinese Postman Problem (CPP)

Next, the most general definition of the CPP on a mixed graph is given.

Definition 2.3 The Chinese Postman Problem (CPP)
Given a strongly connected graph G = (V,E ∪ A) with a positive real function
of costs defined on its links c : (E ∪ A) → R+, the Chinese Postman Problem
is to find a closed walk with the lowest cost that traverses all links in E ∪ A at
least once.

Note that a solution to the CPP may require duplicating some links.

Different cases are of interest: the Undirected CPP where A = ∅, the Di-
rected CPP where E = ∅, the Mixed CPP where A 6= ∅ and E 6= ∅ and the
Windy Postman Problem where the costs for traversing an edge e = uv = vu
depend on the direction in which is traversed, so that cuv 6= cvu.

The Undirected CPP (UCPP)

The decisional version of the UCPP is the Euler [50] problem stated in 1736 on
the Königsberg bridges. Broadly speaking this problem consists of finding a tour
that traverses all the links of a graph exactly once, this is, a simple tour. It is
well known that such a walk exists if and only if all the nodes of the graph have
even degree. Eulerian graphs are those where all vertices have even degree. We
also owe to Leonard Euler, the theorem stating that the number of odd vertices
in any graph is even.

2.4. ARC ROUTING PROBLEMS (ARPS) 17

The idea of minimizing the length of a walk passing through each edge of a
graph, stating hereby an optimization problem, was originally stated in 1962 by
Kwan Mei-Ko [65], also known as Guan. He proposed an algorithm that started
from the idea of pairing the odd-degree vertices of the graph thus making it
Eulerian. With this algorithm he introduced what is the core of arc routing:
The augmentation problem, i.e.. the problem of determining the least cost way
of making a graph Eulerian by introducing extra edges or arcs.

Definition 2.4 The Augmentation Problem
Given an undirected connected graph G = (V,E) with n = |V |, and a positive real
function of costs defined on its edges c : E → R+, the Augmentation Problem
is to find a minimum cost set of edges M ⊂ E(Kn) such that G(V,E ∪M) is
Eulerian.

In 1973, this problem was analyzed by Edmonds and Johnson [48] who formu-
lated the augmentation problem on an undirected graph using binary integer
variables xuv, u < v, representing the number of copies of edge uv that are
added to the graph for making it Eulerian. Hence, the problem is formulated as

Minimize
∑
e∈E

cexe

Subject to x(δ(S)) ≥ 1, S ⊂ V, |Sodd| odd, (2.7)
xe ≥ 0, e ∈ E, (2.8)
xe ∈ Z, e ∈ E. (2.9)

where for any S ⊂ V , Sodd denotes the subset of its odd-vertices.

In [48] was also proved that the polyhedron of solutions to (2.7) and (2.8) is
the convex hull of feasible solutions to the UCPP.

Therefore, using the algorithm of Edmonds and Johnson [48] the UCPP can
be solved in an efficient manner by first computing all shortest paths between
all odd-degree vertices and then solving a perfect matching problem over the set
of these odd-degree vertices using these costs. Christofides [28] worked on the
CPP and introduced the Capacitated CPP. Analysis of heuristics for the CPP
have been published by Benavent et al. [21].

In fact, the most remarkable feature that UCPP presents is that it is possible
to solve it in polynomial time with respect the size of the instance. The com-
plexity of the problem is dominated by the resolution of the perfect matching
problem, that is solvable in O(n3).

The UCPP, and the DCPP, are the only ARPs for which we can give exact
algorithms bounded by polynomial time.

18 CHAPTER 2. BACKGROUND

The Directed CPP (DCPP)

In the Directed CPP the problem is stated on a directed graph, so arcs must
be traversed in the corresponding direction. Then, we use the notation |δ−(v)|
and |δ+(v)| for the in- and out-degree of the vertex v.

The condition under which a strongly connected graph is Eulerian is that
|δ−(v)| = |δ+(v)| , v ∈ V .

A procedure for solving the DCPP was proposed by different authors almost
simultaneously in 1974 by Edmonds and Johnson [48], Orloff [92], and Beltrami
and Bodin [19]. It is based on solving an auxiliary transportation problem.

To illustrate the idea, let us first denote by su = |δ+(u)| − |δ−(u)|, u ∈ V ,
and consider Vs ⊂ V the subset of V with su > 0 of vertices acting as suppliers.
Similarly, we denote dv = |δ−(v)| − |δ+(v)|, v ∈ V , and define Vd ⊂ V as the
subset of vertices such that dv > 0. Then, the problem can be formulated as

Minimize
∑
u∈Vs

∑
v∈Vd

cuvxuv

Subject to
∑
v∈Vd

xuv = su, u ∈ Vs, (2.10)

∑
u∈Vs

xuv = dv, v ∈ Vd, (2.11)

xuv ≥ 0, u ∈ Vs, v ∈ Vd. (2.12)

Inequalities (2.10) and (2.11) impose that for any supply vertex, the set of
its outgoing arcs that are used in the solution must coincide with its surplus.
Similarly, for any demand vertex, enough entering arcs must be used in any
feasible solution.

The polytope of the DCPP is fully described by equations (2.10)-(2.12).
Therefore, the DCPP is solvable in polynomial time as well.

Observe that in the formulation, integrality conditions on the variables are
not required given that the matrix of the coefficients is totally unimodular (this
is a matrix such that all its squared sub matrixes have determinant 0, 1, or -1)
and, moreover, the quantities su and du are integer.

2.4. ARC ROUTING PROBLEMS (ARPS) 19

The Mixed CPP (MCPP)

The conditions for a mixed graph be Eulerian are

• The sum of in- and out-degrees must be even.

• The degree corresponding to undirected edges must also be even.

• For any subset S ⊂ V , |δ+(S)|+ |δ−(S)| < |δ(S)| /2.

In 1976, Papadimitriou [95] proved that the MCPP is NP-hard by trans-
forming it from 3SAT. In other words, if the MCPP could be solved in a time
smaller than a power of the instance size n, then the problem known as 3SAT
could also be, but it is well known that 3SAT is an NP-hard problem and,
unless P = NP, it can not. The problem remains NP-hard even when assum-
ing some simplifications on it, as requiring the graph being planar or having all
costs equal.

Formulations define variables similarly than in the previous sections, in
the sense that a variable associated with each link is defined. This problem
has been studied by many authors. Exact algorithms have been given by
Christofides et al. [20] using branch-and-bound technique with Lagrangean
relaxation, Grötschel and Win [64], and Norbert and Picard [90] used branch-
and-cut techniques. Laporte [76] proposed an exact algorithm by means of a
transformation to the TSP. Also, Eiselt, Gendreau and Laporte [49] used net-
work flow techniques to make the resulting Eulerian mixed graph completely
directed.

On the other hand, an heuristic method has also been proposed by Edmonds
and Johnson [48], later improved by Frederickson [57] who achieved a ratio
of 5/3. Pearn and Liu [98] improved these existing heuristics. Raghavachari
and Veerasamy [100] proposed different approximation algorithms improving
the ratio to 3/2.

The Windy CPP (WPP)

This problem was first introduced in 1979 by Minieka [87]. The objective takes
into account that not always the cost of traversing an edge must be equal in
both directions.

Definition 2.5 The Windy Chinese Postman Problem (WPP)
Given an undirected connected graph G = (V,E) with two positives real functions
on the edges, that represent the costs of traversing an edge uv ∈ E, u, v ∈ V , in
the direction from u to v and from v to u, the Windy Chinese Postman Problem
is to find a directed tour with the lowest cost that traverses all edges of E.

20 CHAPTER 2. BACKGROUND

The WPP has also been shown to be NP-hard, by Brucker [26] and Guan [66].
Nevertheless, under certain conditions it might be solved in polynomial time.

The polytope of the WPP has been studied, and branch and cut algorithms
have been proposed by Win [106, 107] and by Grötschel and Win [64].

2.4.2 The Rural Postman Problem (RPP)

The RPP was first introduced in 1974 by Orloff [92].

Definition 2.6 The Rural Postman Problem
Given a strongly connected graph G = (V,E∪A) with a positive real function of
costs associated with its links c : (E ∪ A) → R+, and a subset of required links
R ⊆ (E ∪ A), the Rural Postman Problem is to find a minimum cost tour that
traverses all required links at least once.

Note that a solution to the RPP may select and duplicate some links.

When the set of required edges is connected the RPP reduces to a CPP.
However, in the general case the RPP is in the class of NP-hard problems in
all its versions, as seen below. Similarly to the CPP, the RPP may be defined
over undirected, directed, mixed or windy graphs. Many other variants of the
RPP have been studied. Golden and Wong [59] introduced the capacitated
version. Also, Letchford and Eglese [84] studied the RPP with deadline classes.
Recently the Windy General Routing Problem has been studied in depth by
Plana [99], and by Corberán, Plana and Sanchis [37], making a description
of several families of valid inequalities most of which are facets, for the LP
polyhedron of the WGRP. An exact algorithm for the WGRP was proposed by
the same authors in [38]. The WGRP is a generalization of most ARPs, among
which the windy version of the RPP is clearly included.

The Undirected RPP (URPP)

Many authors have studied the RPP when it is stated on an undirected graph.
In 1981, Christofides et al. [30] proposed a branch and bound algorithm in
which the lower bounds were computed by means of Lagrangean relaxation.
The decision variables represented the number of copies of each edge to be
added to the graph for making it Eulerian. Sanchis [102], and Corberán and
Sanchis [40] proposed a different formulation. They also developed a branch
and cut algorithm conducted by their polyhedral analysis. First, the original
graph G0 is transformed into a new graph G where the set of nodes is V (R).
That is, all the nodes that have no required edge incident with them have been
eliminated. In addition, in G non required edges of G0 have been substituted by

2.4. ARC ROUTING PROBLEMS (ARPS) 21

minimum cost paths between their end nodes. Like in the previous case, [30],
decision variables represent the number of copies to be added to the set R in a
feasible solution.

Let Vi, i = 1, . . . , p denote the set of vertices of the connected components
induced by the set of required edges in G. Then, the basic ILP formulation of
Corberán and Sanchis [40] is,

Minimize
∑
e∈E

cexe

Subject to x(δ(v)) ≡ 0 (mod 2) v ∈ V, δR(v) even,
x(δ(v)) ≡ 1 (mod 2) v ∈ V, δR(v) odd,

x(δ(S)) ≥ 2, S ⊂ ∪i∈QVi, Q ⊂ {1, . . . , p},
xe ≥ 0 and xe ∈ Z e ∈ E.

Corberán and Sanchis [40] proposed several families of new valid inequalities
for the URPP: K-C inequalities, Path-Bridge and Honeycomb. They proposed
a solution algorithm based on the above formulation where valid inequalities
were separated and iteratively incorporated to the formulation of the problem.
Letchford [82, 83] proposed new valid inequalities for the URPP. Ghiani and
Laporte [58] proposed a new formulation based on the characterization of the
variables that can take the value two in an optimal solution, and proposed an
exact algorithm based on their formulation. Also, Fernández et al. [53] proposed
a new formulation and obtained tight lower bounds for the URPP.

On the other hand, a heuristic for the URPP was proposed by Frederickson
[57], based on the heuristic for the TSP given in 1976 by Christofides [29]. The
cost matrix must satisfy the triangular inequality to guarantee the worst case
ratio of 3/2.

With respect to the computational complexity Lenstra and Rinnooy Kan
[81], proved that URPP is NP-hard by transformation from HAMILTONIAN
CIRCUIT.

The Directed RPP (DRPP)

The directed version for the RPP has also been studied in depth. Christofides
et al. [31] gave an ILP formulation and proposed a branch and cut solution
algorithm based on that formulation, where Lagrangean relaxation was used for
obtaining lower bounds.

On the other hand, a similar heuristic to that of the undirected case consists
in computing the minimum spanning tree. Analogously to the DCPP, once

22 CHAPTER 2. BACKGROUND

the tree has been computed a transportation problem must be solved. This
algorithm was also proposed by Christofides et al. [31]. One more heuristic
algorithm was presented by Ball and Magazine [16].

The Mixed RPP (MRPP)

Given that the mixed version of the RPP is close to the windy version, the
MRPP has been scarcely studied. A complete analysis was presented by Romero
[101]. More recently, a heuristic procedure based on a tabu search algorithm for
the MRPP has also been published by Corberán, Marti and Romero [34].

2.4.3 The Windy General Routing Problem (WGRP)

In the WGRP some vertices, edges, or both might be required. This problem
was studied by Plana [99], and by Corberán, Plana and Sanchis [37]. This is
the most general version of the RPP so far. Transforming the WGRP to any of
the previous versions is simple.

Corberán, Plana and Sanchis [38] developed a polyhedral analysis of the
WGRP identifying a large family of facets and introducing other valid inequa-
lities.

We describe the formulation proposed by Plana [99], and Corberán, Plana
and Sanchis [37]. The decision variables xuv represent the number of times that
edge e = uv is traversed in the direction from vertex u to vertex v.

Minimize
∑
uv∈E

(cuvxuv + cvuxvu)

Subject to xuv + xvu ≥ 1 uv ∈ Er (2.13)∑
uv∈δ(u)

(xuv − xvu) = 0 u ∈ V (2.14)

x(δ(S)) ≥ 1 S ⊂ ∪i∈QVi, Q ⊂ {1, . . . , p} (2.15)
xuv, xvu ≥ 0 (2.16)
xuv, xvu ∈ Z (2.17)

The objective function is the sum of costs of the edges that are used taking
into account the direction in which they are traversed. The obligation inequa-
lities (2.13) force solutions to traverse each required edge, no matter in which
direction. Then, the flow conservation (2.14) equations guarantee the parity of
the vertices by imposing that the number of times that the solution tour enters

2.5. ARPS WITH PROFITS 23

a vertex be equal to the number of times it leaves that vertex. Finally, the
connectivity inequalities (2.15) make the solution connected.

2.4.4 The Clustered RPP (CRPP)

The Clustered Rural Postman Problem (CRPP) is a restricted version of the
DRPP in which each connected component of arcs has to be completely serviced
before servicing another component. To some extent, the problem that we ad-
dress in this dissertation is related to the CRPP studied by Dror and Langevin
[46] where the authors presented an enumerative solution method based on
transforming the CRPP into a version of the Generalized TSP seen in subsec-
tion 2.3.3. Hence, the interest of this approach relies on this transformation
more than in any LP formulation.

2.5 ARPs with Profits

In all the ARPs that we have presented so far, we have assumed that there is
a set of mandatory or required links with demand that any feasible solution
must service and, thus, the objective function only considers the cost of the
additional links that are traversed in the routes. Potential applications of these
problems arise naturally in the context of essential services. However, it is
natural to consider other types of applications associated with non essential
services, where there is a set of links with demand, but it is not mandatory
to serve all such links. Now, if a demand link is serviced, a profit is obtained.
As usual, each time that a link is traversed a cost is incurred. Therefore, in
ARPs with profits the set of demand edges to be serviced must be decided. In
addition, the minimum cost Eulerian tour that traverses all serviced links must
be found.

To the best of our knowledge, the literature on arc routing problems with
profits on the edges is very scarce. Apart from the previous works of Aráoz,
Fernández and Zoltán [11], and Aráoz, Fernández and Meza [10], we are aware
of only two works, one by Deitch and Ladany [44], and another one by Feillet,
Dejax and Gendreau [51], where problems of this type are considered. However,
in both papers the setting and the approach are quite different from that of
[11, 10]. While the approach of [11, 10] address the problem as an arc-routing one
and exploits explicitly the fact that only one traversal of each edge is beneficial,
in [44] the problem is transformed into a node-routing one, whereas in [51] a
limit, possibly greater than one, is given on the number of times the traversal
of an edge can be beneficial.

24 CHAPTER 2. BACKGROUND

2.5.1 The Prize-collecting RPP (PRPP)

An extension of the RPP was proposed in 2003 by Aráoz, Fernández and Zoltán
[11]. It is called the Prize-collecting Rural Postman Problem (PRPP). Formally,
the PRPP is defined next.

Definition 2.7 The Prize-collecting Rural Postman Problem
Given an undirected connected graph G(V,E) with a distinguished vertex d (the
depot), a real positive function of costs defined on its edges c : E → R and a no-
negative real function of profits, b : E → R the Prize-collecting Rural Postman
Problem is to find a closed walk, T ∗, which maximizes the value of∑

e∈T
(be − cexe)

where T is any tour in G passing through d, and xe is the number of times that
the edge e is traversed in T .

Thus, in the PRPP a profit is assigned to some edges, called edges with
demand. This profit may be understood as a consequence of the service offered.
So, there are not required edges but demand ones, and as opposite to the RPP,
the PRPP admits the possibility of not servicing some edges with demand in
the feasible solutions. In fact, the empty solution, consisting in not moving from
the depot, is feasible for the PRPP as opposed to all problems presented so far.

A deeper analysis might be found in [11], and an exact algorithm for the
problem is given in [10]. Note that the profit of an edge is collected only when
it is first traversed by the solution tour. In [10], the authors proved that there
is an optimal solution where no edge is traversed more than two times. This
allows the authors to give a formulation that uses two sets of binary variables:

For each edge e ∈ E, we have

• xe with value of 1 if edge e is traversed by the solution, and

• ye, with value 1 when edge e is traversed twice in the solution.

Thus xe, ye ∈ {0, 1}, e ∈ E. Given the relationship between the PRPP and
the problem studied in this dissertation, the ILP formulation for the PRPP of
[10] is presented here.

Attention should be paid to the fact that now a maximization objective
function is considered, where some of the coefficients are given by ϕe = be − ce.
This objective function is divided in two terms associated with the first and the
second traversal of the edges.

2.5. ARPS WITH PROFITS 25

Maximize
∑
e∈E

ϕexe −
∑
e∈E

ceye

x(δ(S) \ F) + y(F \ L) ≥ x(F) + y(L)− (|F |+ |L|) + 1, (2.18)
S ⊂ V \ {d}, F ⊆ δ(S), L ⊆ F, |F |+ |L| odd

x(δ(S)) + y(δ(S)) ≥ 2xe, (2.19)
S ⊆ V \ {d}, e ∈ γ(S), V (e) ∩ VR = ∅

x(δ(S)) + y(δ(S)) ≥ 2xeR
k
, (2.20)

S ⊆ V \ {d}, k 6= 0, Vk ∩ S 6= ∅

xe = xeR
k
, e ∈ γ(Vk) ∩R, k ∈ P (2.21)

ye ≤ xe, e ∈ E (2.22)
xe ≤ xeR

k
, e ∈ (γ(Vk) ∪ δ(Vk)) \R, k ∈ P (2.23)

ye = 0, e ∈ γ(Vk) \R, k ∈ P (2.24)
xe = 1, e ∈ γ(V0) ∩R
xe, ye ∈ {0, 1}, e ∈ E

• Inequalities (2.18) ensure even degree at every subset of vertices and, in
particular, at every vertex. We call set-parity inequalities to constraints
(2.18), and node-parity inequalities to the particular cases with S being
a singleton, i.e. S = {v}, v ∈ V . Inequalities (2.18) are an adaptation
to the PRPP of the so called cocircuit inequalities introduced by Bara-
hona and Grötschel [17] in a matroid context (see also Aráoz et al. [4]).
These inequalities are otherwise known as 2-matching or parity inequali-
ties. Broadly speaking they require that if a solution uses an odd number
of edges incident with a subset of vertices S, then the solution uses at
least one additional edge of the cut-set δ(S). In the case of the PRPP
[10] the authors further exploit the precedence relationship of x variables
with respect to y variables given by a dominance relation also proved by
the authors, that allows to further restrict the set L to be a subset of
F . The particular case of set-parity inequalities when F is a singleton,
i.e. F = {e} and L = ∅, also imply connectivity with the depot of any
edge e ∈ δ(S) that is selected (that is, such that xe = 1). Indeed, when
F = {e}, and L = ∅, inequalities (2.18) can be rewritten as

x(δ(S) \ F) + y(F \ L) ≥ xe + 1− 1 ≡
x(δ(S))− xe + ye ≥ xe ≡

x(δ(S)) + ye ≥ 2xe (2.25)

We denote this particular case as parity-connectivity inequalities.

• In (2.19) and (2.20), R = {e ∈ E | be > 2ce} and eRk is an arbitrarily
selected demand edge of the kth. connected component induced by the set

26 CHAPTER 2. BACKGROUND

R. Then, inequalities (2.19) and (2.20) ensure connectivity with the depot
of any edge e ∈ γ(S) that is traversed (that is, such that xe = 1). These
inequalities are referred to as connectivity inequalities. Inequalities (2.19)
and (2.20), together with inequalities (2.18), guarantee that solutions to
the model define Eulerian circuits.

• In [10] it is proved that whenever a demand edge e is serviced, all edges
in δR(e) will also be serviced. This is imposed by equations (2.21).

• Inequalities (2.22) say that no edge can be traversed for the second time
if it is not traversed for a first time.

• Equations (2.23) impose that if a non-demand edge e adjacent to some
demand edge eR is traversed, then eR must be traversed too, and so,
serviced.

• Inequalities (2.24) limit the edges that can be traversed two times in
an optimal solution, by imposing that none of the non-demand edges in
γ(Ck) \ Ck can be traversed twice.

Chapter 3

The Clustered Prize-collecting
Arc Routing Problem

In this chapter we study the Clustered Prize-collecting Arc Routing Problem,
CPARP, defined on an undirected graph. Like in the PRPP seen in Subsec-
tion 2.5.1, there is a set of edges with demand, each of which produces a profit
if it is serviced. We name cluster to each connected component defined by the
set of demand edges. In the PRPP no condition was required on the set of
demand edges serviced by feasible solutions. Instead, in the CPARP we impose
additional constraints expressed in terms of conditions on the clusters. In par-
ticular, we require that in a feasible solution each cluster is either fully serviced
(i.e. all of its demand edges are serviced) or not serviced at all (no profit of
the edges of the cluster will be collected). We are not aware of any work that
considers the problem addressed in this dissertation.

This chapter is structured as follows. We start by defining the problem. This
includes a formal definition for the CPARP, an example presented next, and a
reduction from the RPP that allows us to establish its complexity. Once the
problem is presented, we get into the analysis of the model. Some properties of
the problem can be postulated on the original graph. However, other properties
only hold when the problem is stated on a complete graph. All these properties
allow us to reduce considerably the set of edges that would make part of any
optimal solution. Hence, we describe the transformation of the original problem
into a problem defined on Kn being n the number of demand vertices, n =
|V (D) ∪ {d}|. Next, we prove a list of properties of feasible and optimal solutions
for the CPARP when stated on the complete graph. Then, these properties
are used for defining the sets of variables. We finish the chapter with an ILP
formulation for the CPARP stated on the complete graph.

27

28 CHAPTER 3. THE CPARP

3.1 Definition

The CPARP is stated on an undirected connected graph G(V,E). Before getting
into the definition itself, we describe all input data that characterize an instance.
Let D ⊂ E denote the subset of demand edges, and d ∈ V a distinguished
vertex called the depot. Each cluster defined by the demand edges is denoted
Ck, k ∈ {0, . . . , p}, and the set of vertices of each cluster is denoted Vk. That
is, Ck = γD(Vk) = γ(Vk) ∩ D. For a simpler notation, we assume that d ∈
V0. Throughout, we will use the terms D-even and D-odd to classify vertices
depending on the parity of the number of demand edges in their cut. That is,
v ∈ V is D-even if |δD(v)| is even. Similarly, v ∈ V is D-odd if |δD(v)| is odd.
Let also denote b : D → R+ a real positive function of profits on the elements
of D, and c : E → R+ a real positive function of costs on all edges of E.

Formally, the definition of the problem is as follows:

Definition 3.1 The Clustered Prize-collecting Arc Routing Problem (CPARP)
Feasible solutions for the CPARP are tours going through d, such that for each
cluster Ck, k ∈ {0, . . . , p}, either all its edges are serviced or none of its edges
is serviced.

The Clustered Prize-collecting Arc Routing Problem is to find a set of clusters
K∗ ⊆ {0, . . . , p}, and a tour T ∗, passing through d, that services all the edges in
∪k∈K∗Ck, but none of the edges in D \ ∪k∈K∗Ck, which maximizes the value of∑

k∈K

Fk −
∑
e∈T

tece

over all feasible tours T , where K is the set of clusters serviced in the tour T ,
te is the number of times that edge e is traversed in T , and Fk = b(Ck).

We represent a CPARP by CPARP(G,D,d,b,c).

In the next subsection an example is presented. The same instance is used
for the PRPP of Subsection 2.5.1 and for the CPARP in order to compare their
optimal solutions. We denote by z∗PRPP and z∗CPARP the value of the optimal
solutions for the PRPP and the CPARP, respectively. Note that, since the
CPARP is a particular case of the PRPP, we will always have z∗PRPP ≥ z∗CPARP .

Example

An example is depicted in Figure 3.1. Demand edges appear in bold, non-
demand edges in thin lines. Next to each edge, its cost (in dark) and profit (in
light) are depicted. In this example V0 = {d}, V1 = {1, 2, 3} and V2 = {4, 5, 6, 7}.

3.1. DEFINITION 29

Also, C0 = {d}, C1 = {{1, 2}, {1, 3}, {2, 3}} and C2 = {{4, 5}, {5, 6}, {5, 7}}.
Observe that edges {4, 7} and {6, 7} are in γ(V2) \ C2.

d

1

2

3

4

5 6

7

5

3

7

4

7

3

3
2

2

3

2

9

4
5

3
5

8

d

1

2

3

4

5 6

7

Figure 3.1: Example instance. Costs are shown for all edges. Demand edges are in
bold with its profits in light over their costs in dark.

The unique optimal solution to the PRPP is the cycle d−2−1−3−5−4−d
with value z∗PRPP = 4, that is (5 + 7 + 9)− (3 + 3 + 3 + 2 + 4 + 2) as shown in
Figure 3.2.

d

1

2

3

4

5

01234

5

3

7

3

3
2

2

9

4

d

1

2

3

4

5

Figure 3.2: Optimal solution to the PRPP instance of Figure 3.1, with z∗PRPP = 4.

However, for the CPARP this solution is not even feasible since in component
C1 edges {1, 2} and {1, 3} are serviced, but edge {2, 3} is not, and in component
C2 edge {4, 5} is serviced but edges {5, 6} and {5, 7} are not.

In Figure 3.3, the subgraph of demand edges D, composed by the two con-
nected components plus the depot, is explicitly shown.

The optimal solution to this CPARP consists of servicing only the edges of
component C1 and is thus given by d−2−3−1−2−d with value z∗CPARP = 3,
as depicted in Figure 3.4.

30 CHAPTER 3. THE CPARP 1

d

1

2

3

4

5 6

7

d

1

2

3

4

5 6

7

Figure 3.3: Clusters of the instance of Figure 3.1.

d

1

2

3

d

1

2

3

C0

C1

Figure 3.4: Optimal solution to the CPARP instance of Figure 3.1, servicing clusters
C0 and C1, with value z∗CPARP = 3.

Reduction from the Rural Postman Problem

The Rural Postman Problem is a particular case of the CPARP. Given a RPP
on a graph G with cost function c and required set of edges R, let Ck, k ∈
{1, . . . , p + 1}, be the connected components associated with R, and let M be
a very large constant, M > 2c(E). Then, define the CPARP with demand set
D = R, d any vertex in V (D), set of clusters Ck, k ∈ {0, . . . , p}, and b given by
be = M , e ∈ D. If, furthermore, we denote wk the cost of any bipath between
d and Ck, we have∑

e∈Ck

(be − 2ce) = |Ck|M − 2c(Ck) > wk k ∈ {0, . . . , p}.

Therefore, the complete demand set D = R will be serviced in any optimal
solution to the CPARP, which defines an optimal solution to the initial RPP.

As a consequence of the above remark the CPARP is NP-hard.

3.2. ANALYSIS OF THE PROBLEM 31

3.2 Analysis of the Problem

Most properties of the solutions to the CPARP are inherited from properties
of the PRPP. Nevertheless, there are other properties that do not hold for the
CPARP stated on a general graph. As we will see these properties certainly
hold when the CPARP is stated on a complete graph. In particular, in [10] is
proved that for the PRPP all optimal solutions that traverse a demand edge
gives service to it. This property does not hold on the CPARP as defined in
Section 3.1. This is illustrated in the example of Figure 3.5.

d

2

3

4

5

6

7

8

9

10

11

1

1

1

1

1

1

1

3

3

3

3

3

Figure 3.5: An instance of a CPARP with three clusters. Costs are equal to 1 for all
edges. Benefits are shown.

In the instance of Figure 3.5, edges with demand define two components. In
the first one the profit for servicing each edge is one, whereas in the second one
it is three. All costs of the edges of the graph are one.

dC0

C2

Figure 3.6: Optimal solution to the CPARP instance of Figure 3.5, servicing clusters
C0 and C2, with value z∗CPARP = 3.

It is easy to check that the optimal solution consists of servicing the second

32 CHAPTER 3. THE CPARP

component and not servicing the first one, thus resulting z∗CPARP = 3. This
optimal solution is depicted in Figure 3.6 with labels for the clusters serviced.

Observe that the optimal route does traverse, two times, the edge {2, 4}
of the first component. Hence, this example illustrates that there might exist
optimal solutions to the CPARP where some edges with strictly positive profit
are traversed, even twice, without ever collecting their profit.

In the following subsection we present a transformation of the original graph
that allows us to formulate the CPARP on a complete graph. This transforma-
tion has basically two advantages. On the one hand, we will prove that in the
transformed graph there exist optimal solutions that traverse no edge of any
non serviced component. Later on, this dominance relation will be expressed
as a family of inequalities that will reinforce the formulation of the problem.
The second advantage is that we will characterize the set of edges that can be
traversed twice in any optimal solution. This will result in a considerable re-
duction on the number of variables that we will define to represent the second
traversal of edges.

3.2.1 Graph transformation: CPARP on Kn

Let us consider the complete graph Kn, with the set of vertices V (D) ∪ {d}, so
n = |V (D) ∪ {d}| andm = n(n−1)/2. Observe that V (D)∪{d} = ∪k∈{0,...,p}Vk.

The set of demand edges in the transformed problem on Kn is the same of
that of the original problem on G. Therefore, also the clusters in Kn will be
identical to those in G.

For each edge e ∈ E(Kn), let PGe denote the minimum cost path in G
between the end-vertices of e, and therefore, c(PGe) its cost. The profit and cost
values of the edges of Kn are defined depending on their nature.

• When e ∈ D, let ∆e = ce − c(PGe). Then the new cost on Kn is defined
as ce := ce − ∆e, and its profit be := be − ∆e. This is to say that when
c(PGe) = ce, e inherits from G both its profit and cost values, be and ce.
Otherwise, the cost of e in Kn is defined to be c(PGe), thus being reduced
in ∆e > 0. Therefore its profit is defined as be−∆e. Observe that when an
optimal solution to the CPARP (G,D, d, b, c) serves an edge e ∈ D with
c(PGe) < ce, then its contribution to the objective function, be − ce, is the
same than the net profit of edge e in the CPARP (Kn, D, d, b, c). Note
also that when c(PGe) < ce, it is better to use the minimum cost path that
connects the end-vertices of the edge e, than a second traversal of edge e.
Thus, such edges will never be used twice in an optimal solution to the
CPARP (G,D, d, b, c).

• Otherwise, when e /∈ D, its cost in Kn is defined to be c(PGe) and its

3.2. ANALYSIS OF THE PROBLEM 33

profit, zero.

Proposition 3.1 The complete graph Kn satisfies the triangular inequality with
respect to the costs c.

cuv ≤ cuw + cwv ∀u, v, w ∈ (V (D) ∪ {d}).

Proof The result follows by the definition of the cost function on Kn. 2

Proposition 3.2 There is an optimal solution to CPARP (Kn, D, d, c, b) that
defines an optimal solution to CPARP (G,D, d, c, b) with the same optimal
value.

Proof Let T ∗Kn
be an optimal solution to CPARP (Kn, D, d, c, b), and let T ∗G

denote the solution to CPARP (G,D, d, c, b), where all edges e /∈ D of T ∗Kn
have

been substituted by their corresponding paths PGe . Since ∀e /∈ D, the contribution
to the objective function is −ce = −c(PGe), the value of T ∗Kn

and that of T ∗G
coincide. Therefore, T ∗G is also an optimal solution to CPARP (G,D, d, c, b). 2

C0 C2

Figure 3.7: Optimal solution to the instance of Figure 3.5 when the problem is stated
on Kn.

Figure 3.7 shows an optimal solution to the instance of Figure 3.5, when the
problem is stated on the complete graph. As can be seen, this optimal solution
does not traverse any edge of a component that is not serviced.

Once assumed that throughout we state the CPARP on the complete graph
Kn, we modify the notation. From now on, we will denote by V the set of vertices
V := V (D) ∪ {d}. Hence, n = |V (D) ∪ {d}|. Consequently, E := E(Kn). Also,
we denote by b and c the profit and cost functions on Kn.

3.2.2 Edge Classification for the CPARP

The CPARP will be formulated in terms of a integer linear programming (ILP)
problem. In order to do that, we must define the variables involved. In this

34 CHAPTER 3. THE CPARP

subsection we establish several subsets of edges of the CPARP stated on Kn.

First, a partition of the whole set of edges of Kn consisting of three subsets is
postulated, depending on the D-parity of their vertices. Then, making reference
only to the non-demand edges, another partition consisting of two subsets is
established depending on whether or not they connect different clusters. Finally,
a singular subset is also defined. Next, we classify edges depending on three
different criteria.

According to the D-parity of its vertices: De, Do and Dm

We have three sets of edges that partition the whole set E(Kn): De contains
all the edges that connect two D-even vertices, Do contains all the edges that
connect two D-odd vertices, and Dm contains all the edges that connect one
D-even vertex with one D-odd vertex.

• D-even edges, De = {uv ∈ E(Kn) | u D−even and v D−even}

• D-odd edges, Do = {uv ∈ E(Kn) | u D−odd and v D−odd}

• D-mixed edges, Dm = E(Kn) \ {De ∪Do}

According to the clusters it connects: H1 and H2

Throughout we will denote H to the set of non-demand edges E(Kn)\D. Given
an edge uv ∈ H, we will refer by Cku

and Ckv
to the clusters containing vertices

u v, being ku, kv ∈ {0, . . . , p}.

We have two subsets that partition H:

• Internal edges, H1 = {uv ∈ H | Cku
= Ckv

}

• Connectivity edges, H2 = {uv ∈ H | Cku 6= Ckv}

Edges in De ∩H2 of lowest cost: M0

For each pair of clusters (Ck1 , Ck2), 0 ≤ k1 < k2 ≤ p, both with some D-even
vertex, consider the set of edgesMk1,k2 = δ(Ck1 : Ck2) = δ(Ck1)∩δ(Ck2). These
are the edges connecting both clusters.

Among them, consider the subset of edges of M ′k1,k2 ⊆ Mk1,k2 that have
both vertices D-even, thus M ′k1,k2 = Mk1,k2 ∩De.

3.2. ANALYSIS OF THE PROBLEM 35

Then, M0 contains an edge of each non-empty M ′k1k2 . Such an edge is of
minimum cost among the ones in M ′k1k2 (with ties arbitrarily selected). We
do so by selecting the edge ei with the first edge index of those ej that have
minimum cost in M ′k1,k2 . The expression is

ek1,k2 = {ei ∈M ′k1,k2 |∀ej ∈M
′
k1,k2

, j > i, cej
> cei

}

Once defined ek1,k2 it is easy to define the set M0,

M0 = {ek1,k2 , 0 ≤ k1 < k2 ≤ p}. (3.1)

Observe that, denoting by α the number of clusters with some D-even vertex,
0 ≤ α ≤ p, we have |M0| = α(α− 1)/2.

A summary of all edge sets defined so far is displayed in Figure 3.8.

d

1 2

3

4

5

6

7

8

9

10
11

12

13

(a)

2

7

4

6 1

8 8

4

3

3 4

3

6

8

4

8

4

5

2

4

2 1

1

1

1

4

1

1
d

1 2

3

4

5

6

7

8

9

10
11

12

13

(b)

d
3

9

10

13

(d)

7

3

2d

1 2

3

4

5

6

7

8

9

10
11

12

13

(c)

Figure 3.8: Summary of the definition of sets: (a) Instance of CPARP with four
clusters. Demand edges in bold (only the costs are shown); (b) Vertices D-even in
black, vertices D-odd in white, edge set De in solid lines, Dm in dashed and Do in
dotted; (c) Vertices of V0 in white, V1 in light, V2 in dark and V3 in black, edge set H1

in dotted lines, H2 in solid; (d) The three edges that define M0.

36 CHAPTER 3. THE CPARP

3.2.3 Properties of the CPARP

Next we study some properties of the CPARP that we will use later on to
define a tight formulation of the problem. We distinguish between two types of
properties:

• Feasibility Conditions: Those that must be satisfied by any feasible solu-
tion to the problem, and, thus, split the solution space in either feasible
or unfeasible solutions.

• Dominance Relations: These propositions need not be satisfied by all fea-
sible solutions, but there is at least one optimal solution that satisfies
them. When these relations can be used to discard some edges from mak-
ing part of an optimal solution we make reference to them as Preprocessing
Statements.

Feasibility Conditions

There are two types of conditions that are common to feasible solutions of all
routing problems and, in particular, to all arc routing problems. On the one
hand, from Euler theorem [50] we know that in an optimal solution any vertex
must have an even number of incident edges, so it must have even degree. We
will refer to these feasibility conditions as parity restrictions. On the other hand,
in any feasible solution all visited vertices must be connected with the depot
someway. Therefore, to prevent solutions from being disconnected, we must also
impose the connectivity restrictions that also are feasibility constraints.

In addition to these two types of conditions, feasible solutions for the CPARP
must satisfy some additional conditions which are specific for the problem. That
is, conditions that guarantee that feasible solutions service either all demand
edges of the clusters or none of them.

Finally, even though they can not be expressed as inequalities, the integrality
conditions must also be considered when defining the polyhedron of feasibility
of the solution tours.

Dominance Relations

Some dominance relations are presented next. The first two do not need the
problem be stated on the complete graph. However from the third, this con-
dition is required. Then, we state the problem on the complete graph with
the transformation given in Subsection 3.2.1. The first dominance relation is
inherited from the PRPP, see [11].

3.2. ANALYSIS OF THE PROBLEM 37

Dominance 3.3 There is an optimal solution to the CPARP (G,D, d, b, c) where
no edge is used more than twice.

Proof We prove this by contradiction. Suppose an edge e ∈ E were traversed
more than two times in an optimal solution T ∗. Then, the solution T ∗∗ that
results by removing from T ∗ two copies of edge e is also feasible since it keeps
both the parity of the vertices and the connectivity with the depot. Given that
T ∗∗ has at least one copy of e, we can assume that if e ∈ D its profit is collected.
Finally, since the value of the new solution is strictly better than that of T ∗, the
solution T ∗ could not be optimal. This contradiction arise from supposing that
such an edge e could exist. 2

Preprocessing 3.4 There is an optimal solution T ∗ to the CPARP (G,D, d, b, c)
in which no edge e ∈ γ(Vk) \ Ck is used more that once.

Proof Suppose T ∗ be an optimal solution to the CPARP (G,D, d, b, c) such that
there existed e = uv ∈ γ(Vk)\Ck which was traversed two times in T ∗. Observe
that removing two copies of e from T ∗ would not disconnect Ck from the depot
and would not change the parity of u and v. Thus, removing two copies of e
from T ∗ results in a feasible solution with an objective function value strictly
better than that of T ∗. Hence, T ∗ could not be optimal. This contradiction arise
from supposing that such an edge e could exist. 2

Proposition 3.5 There is an optimal solution to CPARP (Kn, D, d, b, c), T ∗,
that does not contain two consecutive pairs of parallel edges.

Proof Suppose T ∗ contains a sequence of parallel edges {v0, v1} = e1 − e2 −
· · ·−er = {vr−1, vr}. By definition of the cost function in Kn, the second “copy”
of the sequence can be substituted by edge {v0, vr} without changing the objective
function value. 2

Dominance 3.6 Let T ∗ be an optimal solution to the CPARP (Kn, D, d, b, c)
and let e ∈ δ(Vk)∪ (γ(Vk) \Ck) for some k ∈ {0, . . . , p}. This is, a non-demand
edge incident to some cluster. Then, if e is used in the solution T ∗, the cluster
Ck is serviced by T ∗.

Proof Suppose that some optimal solution T ∗ traverses some edge e ∈ δ(Vk) ∪
(γ(Vk) \ Ck), of a cluster k that is not serviced. Then, e makes part of a
minimum cost path PGf in G for some f = uv between two vertices, u and v, in
different (serviced) components (see Figure 3.6). Since PGf can be substituted
by its associated edge f = uv /∈ D connecting different clusters (see Figure 3.7),
there exists a feasible solution to CPARP (Kn, D, d, c, b) with the same objective
function value than T ∗ that does not traverse any edge of a component that is
not serviced. 2

Preprocessing 3.4 can be strengthened when the problem is stated on Kn, re-

38 CHAPTER 3. THE CPARP

sulting Preprocessing 3.7.

Preprocessing 3.7 There is an optimal solution T ∗ to CPARP (Kn, D, d, c, b)
such that if uv ∈ H1 is used, then both u and v are D-odd.

Proof Suppose that T ∗ contains an edge uv such that uv ∈ γ(Vk) \ Ck for
some k, with u D-even. Therefore, T ∗ must also contain, at least, another edge
uw /∈ D, w 6= v, to recover the even parity of u. Thus, edge uv is part of a
sequence of consecutive edges that defines the path PGe , which can be substituted
by its associated edge e = vw. 2

A very similar argument can be used to prove the following result.

Preprocessing 3.8 There is an optimal solution to the CPARP such that if
e = uv ∈ D is used twice, then u and v are D-odd.

Preprocessing 3.9 There is an optimal solution to CPARP (Kn, D, d, b, c)
where the only edges that are used two times are either e ∈ D∩Do or e ∈ H2∩De.

Proof On the one hand by Preprocessing 3.4, among the ones that connect
two vertices in the same component, only edges in D need to be considered as
candidates to be traversed twice. And in particular, by Preprocessing 3.8, only
edges in Do are these candidates.

On the other hand, among the edges that connect different clusters, so e ∈
H2, suppose that e /∈ De is used twice in an optimal solution T ∗ to the problem
on Kn. Given that e = uv has some D-odd vertex, say vertex u, if edge e is used
twice in T ∗ the parity for vertex u must be restored somehow. Thus, there must
exist f = uw ∈ T ∗ and f /∈ D. Therefore, by Proposition 3.5, we can substitute
in T ∗ the second traversal of e and the traversal of f by the corresponding edge
vw. This new solution would also be optimal and edge e would be traversed only
once. 2

Finally, the second set of the Preprocessing 3.9 is reinforced by Preprocess-
ing 3.10. Recall that M0 was defined in Expression 3.1 as the set of edges
connecting two different clusters through D-even vertices, that moreover have
the minimum costs among all other edges connecting the same pair of clusters
through D-even vertices.

Preprocessing 3.10 There is an optimal solution to CPARP (Kn, D, d, b, c)
where the only non-demand edges that are used two times are edges in M0.

Proof Suppose that T ∗ is an optimal solution to the CPARP that uses twice
some edge e1 = u1v1 ∈ H2 ∩ De, thus D-even connecting different clusters. If

3.3. DEFINITION OF VARIABLES 39

some other edge e2 = u2v2 ∈ H2 ∩De connecting the same clusters with a lower
cost existed, then we could improve the value of T ∗ by using twice e2 instead of
e1. Therefore T ∗ could not be optimal. This contradiction arises from supposing
that such an edge e2 could exist. 2

3.3 Definition of Variables

In our model variables are associated with clusters and with only those edges
that can make part of optimal solution tours. We will distinguish among three
types of variables.

3.3.1 Variables associated with the clusters, zk’s

They will indicate whether or not the cluster Ck, k ∈ {0 . . . p}, is serviced in
the solution. Formally, zk = 1 ⇔ (e ∈ Ck ⇒ e ∈ T), where T is the solution.
Observe that zk ∈ {0, 1}, k ∈ {0 . . . p}.

3.3.2 Variables associated with the edges, xe’s and ye’s

We next define the sets of decision variables associated with edges of the com-
plete graph Kn. Let m = |E(Kn)| = n(n−1)/2. We define two sets of variables
x, y ∈ {0, 1}m to represent the first and second traversal of edges, respectively.
We apply the properties of the previous section to see whether or not for a given
edge e ∈ E(Kn) it is necessary to define associated variables xe and ye. Let
Ex ⊂ Kn and Ey ⊂ Ex denote the sets of edges for which variables xe and ye
are defined. Their expressions follows:

Ex = {D ∪ (H1 ∩Do)} ∪H2 (3.2)
Ey = {D ∩Do} ∪M0. (3.3)

The first set composing Ex in (3.2), is related to internal edges to the clus-
ters. As a consequence of Preprocessing 3.7, among them, candidate edges to
make part of an optimal solution are, besides demand edges, those edges con-
necting D-odd vertices, i.e. (H1 ∩ Do). The second term of (3.2) corresponds
to connectivity edges.

With respect to the set Ey, recall from Preprocessing 3.9 that the only
candidate demand edges to be crossed twice within the same cluster are edges

40 CHAPTER 3. THE CPARP

connecting two D-odd end-vertices. These are edges in D ∩Do. The last part
of Expression (3.3) is a direct consequence of the Preprocessing 3.10.

3.4 ILP Formulation

In this section we present a formulation for the CPARP (Kn, D, d, b, c) that
uses the variables that we have defined. We begin by defining the objective
function. After that, several families of inequalities are also explained and an
ILP formulation for the CPARP is presented.

3.4.1 Objective Function

The objective function must be maximized.

The net profit obtained for servicing all the demand edges of a cluster Ck,
for k ∈ {0, . . . , p} can be expressed as

fk =
∑
e∈Ck

(be − ce)

Then, the expression for the objective function is

max Z =
p∑
k=0

fkzk −
∑

e∈Ex\D

cexe −
∑
e∈Ey

ceye (3.4)

The first term accounts for the net profit of serviced clusters, the second
term is the cost of the first traversal of non-demand edges, and the third term
corresponds to the second traversal of edges.

3.4.2 Cocircuit Inequalities

Most of problems with binary variables require the parity of vertices. For in-
stance, the 2-matching problem, whose solutions are given by the disjoint union
of circuits, as well as different types of routing problems, where solutions are
also made of circuits. It is well known that the parity of the vertices can be
modelled by means of the so called cocircuit, 2-matching or blossom inequalities.

Cocircuit inequalities were formulated by Barahona and Grötschel [17]. Ed-
monds [47] proved that these inequalities fully characterize the 2-matching poly-
tope, and Grötschel and Holland [62] used them in a cutting plane algorithm

3.4. ILP FORMULATION 41

for the perfect 2-matching problem. Given that the 2-matching problem defines
one of the most studied relaxations of the Traveling Salesman Problem, since
the late eighties Inequalities (3.5) have also been considered for the TSP in the
works by Grötschel and Padberg [63] and by Padberg and Rinaldi [94].

In their general form these inequalities are

x(δ(S) \ F) ≥ x(F)− |F |+ 1, S ⊂ V, F ⊆ δ(S), |F | odd. (3.5)

These inequalities are also facets of the polytope of Eulerian graphs [103]
and of the more general polytope of binary matroids [17]. Since the solutions
to arc routing problems are given by Eulerian graphs, they have also been
considered in cutting plane algorithms in the context of arc routing problems.
For instance, Belenguer and Benavent [18] have used them for the Capacitated
Arc Routing Problem. Also, Aráoz, Fernández and Meza [9] for the Prize-
collecting Rural Postman Problem, and Benavent et al. [24] for the Windy Rural
Postman Problem with K vehicles. Ghiani and Laporte [58] have considered
the particular case when S is a singleton in the context of the Rural Postman
Problem.

Inequalities (3.5) can be adapted to the CPARP with the defined x and y
variables resulting in the expression

x(δ(S) \ F) + y((F ∩ Ey) \ L) ≥ x(F) + y(L)− (|F |+ |L|) + 1, (3.6)
S ⊂ V, F ⊆ δ(S) ∩ Ex, L ⊆ F ∩ Ey,

(|F |+ |L|) odd.

The number of inequalities (3.6) is exponential on several variables. In fact, it is
in Ω(2n), since only taking into account the number of vertices, n, the number
of possible subsets S of vertices is O(2n).

3.4.3 Connectivity Constraints

Typically, connectivity constraints are formulated by means of inequalities re-
quiring that the cut-set associated with each subset of visited vertices be greater
than or equal to two. This is,

x(δ(S)) ≥ 2, S ⊂ V, S 6= ∅. (3.7)

As it is well known, imposing such conditions for each cut-sets of each subset of
vertices require a number of inequalities bounded by O(2n). In the particular
case of the CPARP, the clustering constraint reduces the complexity to O(2p)
serviced clusters instead of visited vertices. Therefore, the number of connecti-
vity inequalities in the formulation, although it is exponential on p, it is smaller
than the number of cocircuit inequalities, since this latter is exponential on a
greater number of parameters that moreover have greater values.

42 CHAPTER 3. THE CPARP

For adapting Inequalities (3.7) to the CPARP we note that the only clusters
that must be connected with the depot are the ones that are serviced. Thus we
obtain,

x(δ(S)) + y(δ(S) ≥ 2zk, S = ∪
k∈π

Vk, π ∈ P(Ωp) (3.8)

where,

• P(Ωp) is the set of parts of Ωp = {1, . . . , p}.

• π is any subset of integer numbers from 1 to p. These integer numbers de-
note cluster indices, thus π represents any subset of clusters not containing
the depot cluster.

For a given π ∈ P(Ωp) we have |π| inequalities. Observe that the only difference
among them is in the right hand side term, that for each inequality is 2zk, k ∈ π.
Given that the empty solution as well as the solution that only services C0 are
feasible, we cannot impose any connectivity constraint on the cut-set δ(V0).

3.4.4 ILP Formulation

An integer linear programming formulation, for the CPARP is presented next.

(M) max
p∑
k=0

fkzk −
∑

e∈Ex\D

cexe −
∑
e∈Ey

ceye (3.9)

x(δ(S) \ F) + y((F ∩ Ey) \ L) ≥ x(F) + y(L)− (|F |+ |L|) + 1, (3.10)
S ⊂ V, F ⊆ δ(S) ∩ Ex, L ⊆ F ∩ Ey,

(|F |+ |L|) odd
x(δ(S)) + y(δ(S)) ≥ 2zk, S = ∪k∈πVk, π ∈ P(Ωp) (3.11)

xe = zk, e ∈ Ck, k ∈ {0, . . . , p} (3.12)
xe ≤ zk, e ∈ ((γ(Vk) \D) ∪ δ(Vk)), k ∈ {0, . . . , p} (3.13)

ye ≤ xe, e ∈ Ey (3.14)
zk ∈ {0, 1}, (k ∈ K) (3.15)
xe ∈ {0, 1}, (e ∈ Ex) (3.16)

ye ≥ 0, (e ∈ Ey) (3.17)

where Ωp = {1, . . . , p}.

• Inequalities (3.10) have been seen in Expression (3.6) of Subsection 3.4.2.

• Constraints (3.11) correspond to the connectivity restrictions shown in
Expression (3.8) of Subsection 3.4.3.

3.4. ILP FORMULATION 43

• Then, Equations (3.12) are the clustering restriction defined for the CPARP.

• Next, Inequalities (3.13) are from Dominance 3.6 in Subsection 3.2.3.

• The result of Dominance 3.3 also in Subsection 3.2.3 follows by Inequali-
ties (3.14).

• Finally, the trivial inequalities for making binary x and z variables.

Next we give a proposition to prove that there is no need to impose y vari-
ables to be integer. In order to do that a lema indicating that Gy∗ contains no
tours is proved first.

Throughout, given an optimal solution (x∗, y∗, z∗) to the formulation M, let
Ey∗ be the set of edges of the support graph of the fractional components of y∗.
So, Ey∗ = {e ∈ E | 0 < y∗e < 1} and Gy∗ = (V (Ey∗), Ey∗).

Lema 3.1 Let (x∗, y∗, z∗) be an optimal solution to the formulation M. Then,
the support graph of the fractional components of y∗, Gy∗ , is acyclic.

Proof Suppose that Gy∗ had a tour. Let Ty∗ ⊆ Ey∗ denote such a tour, and let
ε denote the minimum value of all y∗ values in tour Ty∗ , ε = min{y∗e | e ∈ Ty∗}.
Therefore, ε > 0 by definition of Ty∗ .

Let us consider now a new solution (x∗∗, y∗∗, z∗∗) built by making x∗∗ = x∗,
z∗∗ = z∗, and y∗∗e = y∗e − ε,∀e ∈ Ty∗ , but y∗∗e = y∗e otherwise.

Then, (x∗∗, y∗∗, z∗∗) is feasible for (3.9)-(3.17) and its value is better than
that of (x∗, y∗, z∗). Therefore (x∗, y∗, z∗) could not be optimal. 2

Proposition 3.11 Let (x∗, y∗, z∗) be an optimal solution to the formulation M.
Then, y∗e ∈ {0, 1},∀e ∈ Ey.

Proof Suppose Ey∗ 6= ∅.

By Lema 3.1, there exists u ∈ V (Ey∗) which is a leaf in Gy∗ . This is,
∃u ∈ V (Ey∗) such that

∣∣δEy∗ (u)
∣∣ = 1.

Let eu = uv, be the only edge of Ey∗ incident with u. Since δEy∗ (u) = {eu},
we have 0 < y∗eu

< 1.

Now, define the sets S = {u} and F = {e ∈ δ(u) | x∗e = 1}. Note that by
definition, F ⊆ δ(S) ∩ Ex.

Note that, since x∗e ∈ {0, 1},∀e ∈ E, by Inequalities (3.14),

44 CHAPTER 3. THE CPARP

0 < y∗eu
≤ x∗eu

⇒ x∗eu
= 1⇒ eu ∈ F.

So, we have
∑

e∈δ(u)

x∗e =
∑
e∈F

x∗e = |F | > 0.

Define the auxiliary set
Lu = {e ∈ δ(u) | y∗e = 1}. Then we also have that

∑
e∈Lu

y∗e = |Lu| .

Now, consider the following two cases depending on the parity of |F |+ |Lu|:

• If |F | + |Lu| is even, then we define the set L = Lu ∪ {eu} so that
|L| = |Lu|+ 1 and thus, |F |+ |L| is odd.

Observe that for these sets F and L,

x∗(δ(S) \ F) + y∗((F ∩ Ey) \ L) = 0,

whereas x∗(F) + y∗(L)− (|F |+ |L|) + 1 takes the value

|F |+ |Lu|+ y∗eu
− (|F |+ |Lu|+ 1) + 1 = y∗eu

,

which is strictly positive.

Therefore, the cocircuit inequality associated with these sets S, F and L is
violated by (x∗, y∗, z∗).

• Otherwise |F | + |Lu| is odd. Then define the final set L = Lu so that
|F |+ |L| is odd.

Now, observe that for these sets F and L

x∗(δ(S) \ F) + y∗((F ∩ Ey) \ L) =

x(δ(S) \ F) + y((F ∩ Ey) \ L) = y∗eu
< 1,

whereas

x∗(F) + y∗(L)− (|F |+ |L|) + 1 =

|F |+ |L| − (|F |+ |L|) + 1 = 1.

Therefore, also in this case the cocircuit inequality associated with S, F
and L is violated by (x∗, y∗, z∗).

3.4. ILP FORMULATION 45

As a consequence, if (x∗, y∗, z∗) is optimal, Ey∗ = ∅, and therefore

y∗ ∈ {0, 1},∀e ∈ Ey.

2

Chapter 4

An Algorithm for the CPARP

In this chapter we present an exact branch and cut algorithm for solving the
CPARP. At the root node of the enumeration tree we solve the LP relaxation
problem of the formulation M, presented in Chapter 3. Given that this ILP
model has an exponential number of constraints we resort to an iterative LP
solver scheme where at each iteration the following steps are performed.

1. Solve the current LP relaxation problem of the CPARP in-
stance.

2. If the solution is integer terminate.

3. Solve the separation problem for finding different types of
inequalities violated by the solution to the current relax-
ation.

4. If violated inequalities are found, add them to the current
system and jump to step 1, else apply a heuristic and ter-
minate.

Algorithm 4.1 Main iteration for solving the LP relaxation.

So, at the end of each iteration we obtain an upper bound to the original
problem, given by the solution to the relaxed problem. A flowchart with a
general scheme of the Algorithm 4.1 is depicted in Figure 4.1.

Along the next sections, we give a description of the initial relaxation used
for the CPARP and we get into details about how separation problems have
been solved for the different types of inequalities that have been relaxed. The
chapter ends with the description of the exact algorithm. The branching rules

47

48 CHAPTER 4. AN ALGORITHM FOR THE CPARP

and the criterion used for selecting the candidate subproblem are explained.
However, the heuristic used in the exact algorithm will be presented in the next
chapter.

No

No Yes
t:=t+1

Yes

Initial data

 t=0

cuts

optimal

Output

Add

cuts

Solve

LPt

Apply

heuristic

Figure 4.1: Flowchart of the solution algorithm.

4.1 Linear Relaxation

For building up an initial linear programming formulation we choose some sub-
set of constraints of the formulation M seen in Chapter 3. In the algorithm,
the number of inequalities of each family in the initial LP relaxation has been
decided to be in O(n). Inequalities (3.12)-(3.14) have polynomial sizes and are
exactly included in the LP formulation. Instead, only some parity and connec-
tivity constraints are introduces.

On the one hand, with respect to the parity constraints, all cocircuit inequa-
lities (3.10) of the ILP model of the formulation M have been omitted in this
initial formulation of the LP relaxation. Instead, we only introduce one equation
for each D-odd vertex that we next describe. Thus, it must be expected that all

4.1. LINEAR RELAXATION 49

drawbacks that solutions may carry on about the parity on the D-even vertices
will be separated as violated cocircuit inequalities after the first iteration.

On the other hand we select a small subset of connectivity constraints (3.11)
in the formulation M. This reduced collection of connectivity restrictions will
be seen next, in Subsection 4.1.2.

4.1.1 Initial Parity Inequalities

Cocircuit inequalities (3.10) of the formulation M seen in Subsection 3.4.4 are
repeated next.

x(δ(S) \ F) + y((F ∩ Ey) \ L) ≥ x(F) + y(L)− (|F |+ |L|) + 1, (4.1)
S ⊂ V, F ⊆ δ(S) ∩ Ex, L ⊆ F ∩ Ey,

(|F |+ |L|) odd.

They impose all vertices to have even parity in the solution tours.

The number of such inequalities is in Ω(n), since just considering those
associated with different values of S this lower bound is already reached. So,
for the initial LP formulation, Inequalities 4.1 are omitted. Instead, we will only
introduce one equation for each D-odd vertex of the graph, so the number of
parity restrictions is in O(n).

We consider the following dominance relations for D-odd vertices.

x(δ(v) \D) + y(δ(v)) = zk, v ∈ Vk, |δD(v)| odd, k ∈ {0, . . . , p} (4.2)

These initial parity equations are dominance relations, since the properties
imposed by them must be satisfied for all optimal solutions, but other feasible
solutions might not fulfill them.

Their meaning is the following. When an optimal solution services a cluster
k, thus zk = 1, then for each D-odd vertex v ∈ Vk, the solution must use one
additional traversal without profit of some edge incident with v. Getting into
more detail, note that this edge might belong to one of the following sets,

• Edges that are traversed once,

– All non-demand edges with both vertices in the same cluster k. That
is, edges in γ(Vk) \ Ck, thus, in H1. By Preprocessing 3.7, the other
vertex of these edges must be D-odd too.

50 CHAPTER 4. AN ALGORITHM FOR THE CPARP

– All non-demand edges that connect the D-odd vertex v with some
vertex of a cluster different from k, thus, in H2. In this case, the
other vertex can be D-even or D-odd.

• Edges that are traversed twice, thus, demand edges with both vertices
D-odd, that is Do ∩D, since by Preprocessing 3.8, the only edges in Do

that can be traversed two times in an optimal solution are the edges with
demand.

While any feasible integer solution satisfies Constraints (4.2), these equa-
tions may not suffice to guarantee the parity of D-odd vertices when integrality
conditions on the variables are relaxed, as shown in Figure 4.2.

d

7

14

15

17

18

d

7

14

15

17

18

d

7

14

15

17

18

d

7

14

15

17

18

(a)

(b)
C0

C1

C2

Figure 4.2: (a) Instance of a CPARP with three clusters. Demand edges appear in
bold; (b) Unfeasible solution not separated by equations (4.2). Again, demand edges in
bold, and dashed lines mean xe = 1/2. Other fractional variables are yd,7 = 1/2 and
z2 = 1/2.

In Figure 4.2(a) an instance of a CPARP with three clusters is depicted, and
in Figure 4.2(b) an unfeasible solution satisfying Equations (4.2) can be seen.
Demand edges are represented with thick lines. In the solution of Figure 4.2(b)
dashed lines mean edges with solution value xe = 1/2. The cluster C2 has its
corresponding variable z2 = 1/2. Observe that the value yd,7 is also equal to
1/2.

Furthermore, since no parity constraints are introduced in this initial for-
mulation of the LP relaxation for D-even vertices, unfeasible integer solutions

4.1. LINEAR RELAXATION 51

due to violated parity conditions are expected to be found. This is, despite its
integrity, they are not Eulerian. In the example of Figure 4.3(a) an instance
with all its vertices D-even is depicted.

d

1 2

3d

1 2

3

(a)

d

1 2

3d

1 2

3C0

C1

(b)

Figure 4.3: (a) Instance of a CPARP with two clusters. Demand edges appear in bold;
(b) Unfeasible solution not separated with the initial LP formulation.

This can be seen in the integral unfeasible solution of Figure 4.3(b).

As said before, it must be expected that unfeasible solutions, like the one
shown in Figure 4.3(b), will be separated by the cocircuit separation procedure
explained in Subsection 4.2.2.

4.1.2 Initial Connectivity Inequalities

Inequalities (3.11) of the formulation M seen in Subsection 3.4.4 are repeated
next.

x(δ(S)) + y(δ(S)) ≥ 2zk, S = ∪k∈πVk, π ∈ P(Ωp) (4.3)

where Ωp is the set of integer numbers {1, . . . , p}, and thus, P(Ωp) the set
of all possible subsets of numbers in {1, . . . , p}.

They guarantee the connectivity with the depot of any subset of clusters
not containing C0. Then, π ∈ P(Ωp) represents any subset (not containing the
value 0) of indices of the clusters.

52 CHAPTER 4. AN ALGORITHM FOR THE CPARP

Inequalities 4.3 exist in a number exponential on p, so we do not introduce
all of them in the initial formulation. In particular, we only include those as-
sociated with subsets π ∈ P(Ωp) such that |π| = 1. In this way, the number
of connectivity inequalities included in the initial model is in O(p). The corre-
sponding inequalities can be written as

x(δ(Vk)) + y(δ(Vk)) ≥ 2zk, k ∈ {1, . . . , p}. (4.4)

Their meaning is that if a cluster Ck, for k ∈ {1, . . . , p} (so, different from
that of the depot C0) is serviced, thus zk = 1, then at least two edges of its cut
must be traversed too. We do not impose this condition for the depot cluster
C0, since the only solution that just gives service to one cluster that we accept
is the one that services the cluster of the depot.

The edges involved in Inequalities must belong to H2, and therefore, for the
y variables, to M0.

Inequalities (4.4) do not prevent solutions from forming disjoint cycles and,
thus, from being disconnected from the depot. It is easy to find solutions that
satisfy those inequalities and nevertheless, unfeasible. This is illustrated in the
example of Figure 4.4.

d

1

2
3

4 5

(a)

d

1

2
3

4 5

(b) 1

2
3

4 5

1

2
3

4 5

C1

C2

d

Figure 4.4: (a) Instance of a CPARP with three clusters. Demand edges in bold; (b)
Unfeasible solution not separated by Inequalities (4.4). It is servicing clusters C1 and
C2 but disconnected from the depot.

A new instance of the CPARP can be seen In Figure 4.4(a). It has three
clusters whose edges are in bold. Figure 4.4(b) illustrates an unfeasible solution
(since it is disconnected from the depot) for that instance. As can also be
observed, some parity drawbacks exist as well in this solution. The odd parity
of its vertices is expected to be separated by the cocircuit separation procedure
explained in Subsection 4.2.2.

4.2. SEPARATION OF INEQUALITIES 53

4.1.3 A Formulation for the Initial LP Relaxation

Before giving the initial formulation for our linear programming (LP) problem,
let us recall the definition of some involved parameters.

First, the sets defined in the expressions (3.2) and (3.3), delimiting which
variables must be defined.

Ex = D ∪ {H1 ∩Do} ∪H2

Ey = {D ∩Do} ∪M0

And also, the coefficients fk introduced in Subsection 3.4.1 that were defined
for each cluster k, k ∈ {0, . . . , p}, as

fk =
∑
e∈Ck

(be − ce).

The LP formulation is next depicted.

(M0) max
p∑
k=0

fkzk −
∑

e∈Ex\D

cexe −
∑
e∈Ey

ceye

x(δ(v) \ δD(v)) + y(δ(v)) = zk, v ∈ Vk, |δD(v)| odd, k ∈ {0, . . . , p}
x(δ(Vk)) + y(δ(Vk)) ≥ 2zk, k ∈ {1, . . . , p}

xe = zk, e ∈ Ck, k ∈ {0, . . . , p}
xe ≤ zk, e ∈ ((γ(Vk) \D) ∪ δ(Vk)), k ∈ {0, . . . , p}

ye ≤ xe, e ∈ Ey
zk ∈ [0, 1], k ∈ {0, . . . , p}

xe ∈ [0, 1], e ∈ Ex
ye ≥ 0, e ∈ Ey

4.2 Separation of Inequalities

As already indicated, the LP relaxation problem presented in Subsection 4.1.3
does not contain all the inequalities of the ILP problem of Subsection 3.4.4.
Since the goal of the iterative LP based algorithm is to obtain the optimal solu-
tion to the LP relaxation problem, the question that we address in this section
is how to solve the separation problem for the inequalities of that formulation
that have been relaxed.

54 CHAPTER 4. AN ALGORITHM FOR THE CPARP

The strategy that we use for separating relaxed inequalities after obtaining
each solution along the iterations, is next explained.

• First, we try to obtain a violated connectivity inequality (4.3).

• If such inequality exists we add it to the current LP and reoptimize the
resulting LP.

• If no violated connectivity inequalities exist, then we try to obtain a vio-
lated cocircuit inequality (4.1).

• If such inequality is found we add it to the current LP and reoptimize the
resulting LP.

• When neither violated connectivity nor cocircuit inequalities are found,
the iterative LP based procedure terminates.

Algorithm 4.2 gives a scheme of the separation procedure at each iteration.

procedure SEPARATION()
{

if (not ADD_VIOLATED_CONNECTIVITY()) then
if (not ADD_VIOLATED_COCIRCUIT()) then
terminate

end if
end if

}

Algorithm 4.2 Separation procedure.

Observe in Algorithm 4.2 that only when no more violated connectivity
inequalities are found in the solution, we try to separate some cocircuit one.
Once included the first group of violated cocircuit inequalities, again we will loop
until no more violated connectivity exist. Since usually connectivity inequalities
involve more variables than cocircuit ones, following this criterion has though
to be better.

For the input data of the separation problems we need the value of the
solution to the current LP relaxation. So, throughout this section, (xt, yt, zt)
denotes the solution to the LP relaxation obtained at some iteration t, t ∈ Z+,
and Gt = Gxt,yt,zt = (V t, Et) denotes the subgraph induced by (xt, yt, zt).

As usual, Gt = (V t, Et) is defined as follows:

4.2. SEPARATION OF INEQUALITIES 55

• Et = Ext,yt,zt = {e ∈ E | xte > 0}.

• V t = Vxt,yt,zt = {u ∈ V | ∃e = uv ∈ Et}.

4.2.1 Separation of Connectivity Inequalities

Connectivity inequalities (4.3), are repeated here.

x(δ(S)) + y(δ(S)) ≥ 2zk, S = ∪k∈πVk, π ∈ P(Ωp) (4.5)

Next, the separation problem for these inequalities is formally defined.

Definition 4.1 Separation Problem for Connectivity Inequalities
Given a solution (xt, yt, zt) to the LP relaxation problem that induces a graph
Gt, to find out whether or not there exists a subset of clusters π0 ⊂ P(Ωp) and
a cluster k0 ∈ π0 such that

xt(δ(S0)) + yt(δ(S0)) < 2ztk0 , (4.6)

where S0 = ∪
k∈π0

Vk.

When Gt is disconnected, each connected component defines a violated con-
straint (4.5). Recall that the connected components of a graph can be obtained
with a depth first search algorithm. Many of such algorithms can be found in the
literature (T.H. Cormen [42]). The complexity of these algorithms is O(n+m).
In our case, this is O(|Et|). However, when the graph Gt is connected, some
restriction violated by the current solution (xt, yt, zt) may still exist. From a
numerical point of view, connectivity of Gt only guarantees that the left hand
side of Inequalities (4.5) be strictly positive. And for being satisfied, it is re-
quired not only that the left hand side of the inequality be positive but also be
greater than or equal to 2zk, for some zk > 0, k ∈ {1, . . . , p}.

The general procedure for separating connectivity inequalities (4.5) was first
introduced by Belenguer and Benavent [18] for the Capacitated Arc Routing
Problem. The procedure resorts to finding the Gomory and Hu [60] tree of
minimum cuts of Gt where the capacities of the edges are given by the values
xte. This tree is useful when needing the maxflow solutions for each pair of
vertices of a graph. The algorithm of Gomory and Hu uses a Divide & Conquer
scheme, so it can run in a time bounded by O(n).

Nevertheless, in our case we are only interested in the connectivity of the
serviced components with the depot. And, although we could use the Gomory
and Hu algorithm, we can solve the separation problem by only solving the
maxflow problems in which C0 acts as supplier. So, p such problems will be re-

56 CHAPTER 4. AN ALGORITHM FOR THE CPARP

quired in the worst case, giving thus the same complexity than that of Gomory
and Hu algorithm. Therefore, the maxflow problems can be solved with the
algorithm of Ford and Fulkerson [73]. It consists in an incremental algorithm
that works on integer values for the capacities and the flows.

Getting into deeper detail of the separation procedure, we start by defining
a new auxiliary graph M t(V tm, E

t
m) with capacities associated with its edges,

obtained from the solution graph Gt to the current iteration t. The vertex set
V tm has just one vertex k for each serviced cluster in Gt. The edge set Etm has
one edge connecting each pair of vertices of V tm. And the capacities of the arcs
connecting vertices k1, k2 ∈ V tm is given by the sum of the values of the variables
connecting both clusters.

1. Construct the graph M t(V tm, E
t
m) with

• V tm containing one vertex k for each cluster Ck
such that ztk > 0.

• Etm contains an edge e = {k1, k2} for each pair
of vertices k1, k2 ∈ V tm, with capacity

ce =
∑

e∈δ(Ck1 :Ck2)

(xte + yte)

where δ(Ck1 : Ck2) ≡ δ(Vk1) ∩ δ(Vk2).

2. For each vertex k ∈ V tm, k 6= 0,

• Solve the maxflow problem from C0 to Ck in
M t(V tm, E

t
m), obtaining f , the maximum flow

at the solution, and π, the set of vertices of
V tm left in the sink segment of the minimum cut

• if f < 2 max{zk|k ∈ π}, Inequality (4.5) for
the set of clusters π is violated by (xt, yt, zt).

Algorithm 4.3 Algorithm for finding violated connectivity inequalities.

Algorithm 4.3 is an adaptation of the procedure of Belenguer and Benavent
[18] to the case of the CPARP.

The complexity of the procedure detailed in Algorithm 4.3 is closely related
to that of the maxflow problems. Denoting nt = |V tm| and mt = |Etm| the
complexity of each maxflow problem is in O(ntm2

t), [42]. So, the complexity of
the overall procedure is O(p4). Empirically, we have found that this bound is

4.2. SEPARATION OF INEQUALITIES 57

usually almost never reached, since:

• When the maxflow solution from the depot to any other cluster satisfy the
inequality, all the clusters used in this solution are satisfying the condition
too, and therefore there is no need to solve one special maxflow problem
for these other clusters.

• When the maxflow solution from the depot to any other cluster certainly
finds out some violated cut, the first cluster in the sink segment of the
maxflow solution terminates the loop.

Example

In Figure 4.5 an instance of a CPARP is depicted.

dd

3

4

6
7

10

11

14

15

16

17

18

20

23
24

26

28

30

33

36

Figure 4.5: Clusters of an instance of a CPARP.

For major clarity, only demand edges are shown. Suppose that we want
to separate the connectivity inequalities for the unfeasible (fractional) solution
depicted in Figure 4.6.

In the solution depicted in Figure 4.6 only three clusters are present, C0, C2

and C3. Demand edges are in bold, dashed lines mean values xe = 1/2. A dashed
line also represent the second traversal of edge {d, 7} so meaning yd,7 = 1/2.
Note that variable z3 corresponding to cluster C3 has a value z3 = 1/2, whereas
z1 = z2 = 1.

Observe that each separate cluster of this solution, but C0, satisfy the con-
nectivity inequality associated with it. This is, the sum of the solution values in

58 CHAPTER 4. AN ALGORITHM FOR THE CPARP

its cut is greater than or equal (for this case, equal) to the value of the variable
zk associated with it. However, the depot cluster does not satisfy this condition
since the constraint is not introduced for it.

d

7

10

11

14

15

16

17

18

C0

C2

C3
.

Figure 4.6: Unfeasible solution Gt = (V t, Et) for the instance of Figure 4.5.

The solution to the maxflow problem posed on the graphM t associated with
the solution of Figure 4.6 is depicted in Figure 4.7. Both capacities are 1.

As can be seen in Figure 4.6 the sum of the variables in the cut-set between
C0 and C2 is xd,17 + x7,17 = 1.0, which is the value associated to the capacity
of the edge {C0, C2} in the graph M t. This value coincides thus with the
maximum flow between C0 and C2. The value of the maximum flow is thus 1,
corresponding to edge {C0, C2}, in thick line in Figure 4.7.

C0

C2

C3

C0

C2

C3

Figure 4.7: The maxflow problem posed on M t obtained from Gt of Figure 4.6, with
its corresponding solution: edge {C0, C2} in thicker line.

Therefore, the maximum flow f0,2 = 1 in the above cut (composed by the
only edge {0, 2}) is strictly smaller than 2 max{z2, z3} = 2, since z2 = 1. How-
ever, z3 must be considered when selecting this maximum zk. Observe that C3

has been left on the sink segment of the minimum cut solution.

4.2. SEPARATION OF INEQUALITIES 59

Equivalent maximum flow values may be associated with different minimum
cut edge sets. This happen whenever two consecutive edges are saturated in the
maxflow solution. We always select the edges as far as possible to the depot
when facing this kind of solutions. This breaking ties policy makes the whole
algorithm faster.

As a consequence Inequality (4.5) associated with π = {C2, C3} is violated
by (xt, yt, zt), and therefore, the restrictions

δ(V2 ∪ V3) ≥ 2z2
δ(V2 ∪ V3) ≥ 2z3

added.

4.2.2 Separation of Cocircuit Inequalities

Cocircuit inequalities (3.5) were already presented in Subsection 3.4.2. They
are repeated here for convenience.

x(δ(S) \ F) ≥ x(F)− | F | +1, S ⊂ V, F ⊆ δ(S), |F | odd (4.7)

Next, the separation of inequalities (4.7) is formally stated.

Definition 4.2 Separation Problem for Cocircuit Inequalities
For a given vector xt ∈ Rm, with 0 ≤ xte ≤ 1, e ∈ E, to find whether or not
exist S0 ⊂ V and F0 ⊆ δ(S0), |F0| odd, such that

xt(δ(S0) \ F0) < xt(F0)− | F0 | +1

Inequalities (4.7) can be separated in polynomial time. The basic exact
identification procedure is due to Padberg and Rao [93]. Improving techniques
for speeding up the convergence of the exact procedure have been proposed by
Grötschel and Padberg [63], Grötschel and Holland [62] and Padberg and Rinaldi
[94]. These separation algorithms define an extended graph, whose size can raise
up to n+m vertices and 2m edges, and apply the Padberg and Rao algorithm
[93] to it. Hence, applying the Padberg and Rao procedure to such graph results
in exact procedures of order O((n+m)4), see [63]. Recently, Letchford, Reinelt
and Theis [85] have proposed an algorithm of order O(n4). Aráoz, Fernández
and Meza [9] worked out the basic steps that give an equivalentO(n4) separation
algorithm for inequalities (4.7). The algorithm is also explained in [6]. The order
reduces to OM , when considering only the cases where |S| = 1.

Next, we present the exact separation algorithm for inequalities (4.7) and
then we particularize if for the CPARP.

60 CHAPTER 4. AN ALGORITHM FOR THE CPARP

Recalling the compact notation stated in Section 2.1 for x(δ(s)), let us point
out that Inequalities (4.7) can be rewritten as

∑
e∈δ(S)\F

xe +
∑
e∈F

(1− xe) ≥ 1, S ⊂ V, F ⊆ δ(S), |F | odd (4.8)

Therefore, separating cocircuit inequalities mean minimizing the left hand
side of Inequalities (4.8).

In what follows we will work with a solution vector xt ∈ Rm with 0 ≤ xte ≤ 1,
e ∈ E, that induces a graph Gxt = (Vxt , Ext). Each edge has a capacity
he = min{xte, 1−xte}. And also, a partition of Ext is established, Ext = E−∪E+,
where

• E− = {e ∈ Ext | he = xte} = {e ∈ Ext | xte < 0.5}

• E+ = {e ∈ Ext | he = 1− xte} = {e ∈ Ext | xte > 0.5}

Edges with value xte = 0.5 are assigned arbitrarily to E− or to E+. Then,
a set of vertices S ⊂ Vxt is said to be odd+ if and only if

∣∣δE+(S)
∣∣ is odd, and

even+ otherwise.

The following proposition is proved in [9].

Proposition 4.1 Let S ⊂ V . The following two properties hold:

(a) When S is odd+ then a subset F , |F | odd, that minimizes the value of the
left hand side of constraint (4.8) is given by F = δE+(S). The minimum
value of the left hand side of Inequality (4.8) is then given by h(δ(S)).

(b) When S is even+, a subset F ⊆ δ(S), |F | odd, with minimum value
of the left hand side of constraint (4.8) can be obtained as follows. If
xe1 − (1 − xe1) < (1 − xe2) − xe2 then F = δE+(S) \ {e1}, with xe1 =
min{xe | e ∈ δE+(S)}. Otherwise, F = δE+(S) ∪ {e2}, with e2 such that
xe2 = max{xe | e ∈ δ(S) \ δE+(S)}. The minimum value of the left hand
side of Inequality (4.8) is given by h(δ(S)) + min{xe1 − (1 − xe1), (1 −
xe2)− xe2}.

Throughout for a given cut-set δ(S), e1 and e2 denote arbitrarily chosen
edges such that xe1 = min{xe | e ∈ δE+(S)} and xe2 = max{xe | e ∈ δE−(S)}.

By Proposition 4.1, given a vector x, the smallest value of the left hand side
of Inequalities (4.8) may correspond either to an odd+ set S with F = δE+(S),

4.2. SEPARATION OF INEQUALITIES 61

or to an even+ set S, with a modified set F defined as indicated in Proposi-
tion 4.1(b). Hence, in order to solve the separation problem for a given vector
x we must identify both the odd+ set S with minimum capacity h(δ(S)), and
the even+ set S that minimizes h(δ(S)) + min{xe1 − (1− xe1), (1− xe2)− xe2}.
The result of Padberg and Rao [93] indicates how to identify the odd+ set S
with minimum capacity h(δ(S)). For obtaining these sets, a tree of minimum
cuts, between all pairs of vertices of the support graph is used.

1. Obtain T , the tree of minimum cuts of all pairs of odd+ vertices
of Gxt .

2. Let δ(Si), i = 1, . . . , r be the cut-sets associated with the edges
of T .

3. for i = 1, · · · , r do

3.1 if Si is odd+ and h(δ(Si)) < 1 Terminate.
(Inequality (4.8) with S = Si and F = δ(Si) is violated by
xt).

3.2 if Si is even+ and h(δ(Si)) + min{xt
e1 − (1 − xt

e1), (1 −
xt

e2)− xt
e2} < 1

then

if (xt
e1 − (1− xt

e1) < (1− xt
e2)− xt

e2 then
F = δ(Si) \ {e1}

otherwise
F = δ(Si) ∪ {e2}

endif

endif

Terminate.
(Inequality (4.8) with S = Si and F is violated by xt).

endif

endfor

Algorithm 4.4 Exact separation algorithm for cocircuit inequalities.

The exact algorithm proposed in [9] starts building T , the tree of minimum cuts
of all pairs of vertices of Gxt relative to the capacities vector h. Then the edges
in T are explored in turn until a minimum cut is found for which Inequality (4.8)
is violated, or until all the edges in T have been considered. For each considered
minimum cut δ(Si), the vertex set Si is either odd+ or even+. In the first case, if∣∣Si∣∣ is odd, it only has to be checked whether or not its capacity is smaller than
one. If it is smaller, then S = Si and F = δE+(Si) solve the separation problem.
Otherwise, when

∣∣Si∣∣ is even+, the associated set F will be F = δE+(Si) \ {e1}
when xte1 − (1− xte1) < (1− xte2)− xte2 , or F = δE+(Si) ∪ {e2} otherwise. Once
F is defined, we have to check whether or not Inequality (4.8) is violated b y F
together with Si. The procedure is given in Algorithm 4.4.

62 CHAPTER 4. AN ALGORITHM FOR THE CPARP

Most of the computational burden of Algorithm 4.4 is due to the compu-
tations for obtaining the tree of minimum cuts. That is, due to the selection
of vertices to establish a candidate vertex set S. However, for the case of the
CPARP, a heuristic cocircuit separation has been developed so that no need
to compute the tree exist. Next, the specific algorithm for separating Inequali-
ties (4.8) when |S| = 1 is described. Later we get into details in the heuristic
procedure used in the algorithm for the CPARP, for sets S with more than just
one vertex.

Case |S| = 1

When S is a singleton, the separation of Inequalities (4.7) can be done in OM
as explained next. Observe that if S = {v}, these inequalities can be written as

x(δ(v) \ F) ≥ x(F)− | F | +1, F ⊆ δ(v), |F | odd (4.9)

that also can be rewritten as:∑
e∈δ(v)\F

xe +
∑
e∈F

(1− xe) ≥ 1, v ∈ V, F ⊆ δ(S), |F | odd (4.10)

Then, solving the separation problem for |S| = {v} is to find those edges incident
with it that minimize the left hand side of Inequality (4.10). For this case, the
separation procedure is detailed in Algorithm 4.5 (see [9] for details).

for v ∈ V do

1. F = {e ∈ δ(v) | xte ≥ 0.5}.
2. if |F | is even then

xte1 = min{xte | e ∈ F}
xte2 = max{xte | e ∈ δ(v) \ F}
if xte1 − 0.5 ≤ 0.5− xte2 then

delete e1 from F

otherwise

add e2 to F .

endif

endif

3. If the inequality (4.7) corresponding to this set F is
violated by x∗, then we have a cut.

endfor

Algorithm 4.5 Separation algorithm for S = {v}.

4.2. SEPARATION OF INEQUALITIES 63

A proof of the next proposition can be found in [9].

Proposition 4.2 The separation Algorithm 4.5 is exact and its complexity is
in OM .

Heuristic Cocircuit Separation for the CPARP

Applying the procedure of the exact Algorithm 4.4 at every iteration of a LP
solver based algorithm can be quite time consuming. For this reason in our
case we use a heuristic separation method for Inequalities (4.7) that we next
describe.

Observe that each connected component of the graph induced by the edges
with fractional values, 0 < xte < 1 or 0 < yte < 1, already defines a set Si
with δ(Si) in the tree T used in Algorithm 4.4. The connected components of
a graph can be obtained with a much smaller computational burden than the
exact algorithm.

It is clear that a very simple and fast heuristic consists in computing the
connected components of Gtε, induced by edges such that xte > ε or yte > ε, for a
given parameter 0 ≤ ε < 1. Thus, in our heuristic we create an auxiliary graph
B(Vb, Eb), based on the current solution values (xt, yt, zt), that will have all
vertices of the solution, so Vb = V t, but only those edges e ∈ Et with fractional
values for xe or ye such that ε < xe < 1 or ε < ye < 1. Then, the connected
components of B will be used as candidate subsets of vertices S.

We also test all isolated vertices as candidate subsets of vertices S in order
to make use of Algorithm 4.5.

In this way we avoid computing the tree of Gomory and Hu needed in the
exact separation algorithm.

When adapting Inequalities (4.8) to the CPARP we obtain the expression

∑
e∈δ(S)\F

xe +
∑
e∈F\L

ye +
∑
e∈F

(1− xe) +
∑
e∈L

(1− ye) ≥ 1 (4.11)

S ⊂ V, F ⊆ δ(S), L ⊂ F, |F |+ |L| odd

Next, a detailed algorithm to establish F and L for a given candidate S is
presented in Algorithm 4.6.

64 CHAPTER 4. AN ALGORITHM FOR THE CPARP

Some explanation of the parameters may be convenient. First, note that
the procedure is giving back a logical value whose meaning is whether or not a
violated cocircuit inequality has been found. Also, observe that three sets are
given to the function, S as input data, and F together with L as output.

bool SEPARATE_COCIRTUIT(set S, set& F,set& L)
{

double min_upper = ∞ // minimum variable value > 1/2
int e+ = -1 // index of the previous minimum
double max_lower = 0 // maximum variable value < 1/2
int e− = -1 // index of the previous maximum
F = L = ∅
foreach e ∈ δ(S) do {

if (xe > 0.5) {
F = F ∪ {e}
if (min_upper > xe) {
e+ = e
min_upper = xe

}} else {
if (max_lower < xe){
e− = e
max_lower = xe

}}
if (ye > 0.5) {
L = L ∪ {e}
if (min_upper > ye) {
e+ = e
min_upper = ye

}} else {
if (max_lower < ye){
e− = e
max_lower = ye

}}}
if (|F |+ |L|) even {

if (min_upper - 0.5 < 0.5 - max_lower) {
F ∪ L = F ∪ L \ {e+}

} else {
F ∪ L = F ∪ L ∪ {e−}

}}
return (EVALUATE_COCIRCUIT(S,F,L) < 1)

}

Algorithm 4.6 Procedure to find edge sets F and L for a given vertex set S.

Given that for knowing the edges of the set δ(S) it is required a computa-
tional time in O(n2), it may be worthy to modify Algorithm 4.6, and with some

4.2. SEPARATION OF INEQUALITIES 65

lines of code, to store these identifiers somewhere. Doing so will save this time
when adding the inequality to the formulation.

Example

Next we present an example of the heuristic procedure used for the separation of
cocircuit inequalities. An instance is shown in Figure 4.8(a). Demand edges are
in bold. The graph Gt = (V t, Et) induced by the fractional solution (xt, yt, zt)
can be seen in Figure 4.8(b), with solid lines for edges with xe = 1 and dashed
lines for edges with xe = 1/2.

d
3

7

9

11

14

17

d
3

7

9

11

14

17

(a)

d
3

7

9

11

14

17

d
3

7

9

11

14

17

(b)

Figure 4.8: (a) Instance of a CPARP with three clusters; (b) Unfeasible (fractional)
solution Gt.

When ε = 0, the connected components of Gtε are S1 = {11}, S2 = {3},
S3 = {9}, S4 = {d} and S5 = {7, 14, 17}. Thus, we call the procedure of
Algorithm 4.6 once for each isolated vertex and also for S = {7, 14, 17}.

d
3

7

9

11

14

17

d
3

7

9

11

14

17

(a)

d
3

7

9

11

14

17

d
3

7

9

11

14

17

(b)

Figure 4.9: Cuts in Gt of Figure 4.8(b) that do not satisfy cocircuit inequalities (4.11),
displayed in light grey thick lines.

In Figures 4.9(a) and (b), the two violated cocircuit inequalities found by
the heuristic can be seen, corresponding to S = {7, 14, 17} and S = {11}.

66 CHAPTER 4. AN ALGORITHM FOR THE CPARP

Empirically we have found that violated cocircuit inequalities are found by
pairs. This seems to be related to the Euler theorem about the even number of
odd vertices in graphs.

Even though using the exact procedure seen in Algorithm 4.4 would have
ensured that no violated Inequality (4.5) existed at the termination of the LP
relaxation problem, using a simpler heuristic method as the explained above has
been enough. However, it is quite reasonable to continue the research in this
line to evaluate the required cpu time if the Gomory and Hu algorithm was used.

4.3 Branch & Cut Algorithm

Algorithm 4.1 terminates when no more violated inequalities of types (4.5) or
(4.7) are identified. Then, when the optimality of the last LP solution is not
proved we apply a heuristic to obtain a feasible CPARP solution. The heuristic
will be presented in Chapter 5.

Let (xr, yr, zr) denote the optimal LP solution and Zr its associated value.
Let also denote (xh, yh, zh) the integer solution obtained with the heuristic
method, and Zh the corresponding value. The optimality of Zr can be estab-
lished when the LP solution (xr, yr, zr) is feasible, so integer, for the CPARP.
When it is not, the optimality of Zh can be established if Zh ≥ bZrc. When
neither Zr nor Zh are proved to be optimal we resort to an exact enumerative
algorithm that we describe next.

Recall that by Proposition 3.11 the only variables that can be candidates for
branching are the z and x variables. We define a search tree that is separated
in two stages, one for each of the above types of variables. Since the z variables
have a higher influence on the structure of the problem, we first branch on the
z variables until all of them are integer. Then, when needed, we branch on the
x variables. A scheme of the search tree is depicted in Figure 4.10.

The criterion to select the variable for branching at any node of the z-levels
of stage 1 is described next. Let us denote bk = min{zk, 1−zk} ∀k ∈ {0, . . . , p}.
Then, the selected variable for the branch is zk̂ corresponding to the index k̂
such that bk̂ = max bk, 0 ≤ k ≤ p.

Hence, we branch on the z variable that takes the value closest to 1/2. Once
the branching variable is selected we proceed depending on different cases.

• If min{zk̂, 1− zk̂} = zk̂, that is when zk̂ < 0.5, we explore first the branch
zk̂ = 0.

4.3. BRANCH & CUT ALGORITHM 67

• Otherwise, we explore first the branch zk̂ = 1.

At any node of the x-levels, in the stage 2 of the tree, we use the same
criterion as above, now applied to the x variables.

At both stages of the tree we have tested several more sophisticated criteria
both for selecting the branching variable and the first branch from it, although
this did not improve our results.

LP0

LP1

LP2

.

LPi

LPj

LPp

LPp+1 LPp+...

zk1 = 0

zk2 = 0 zk2 = 1

zk1 = 1

z... = 0 z... = 1 ... = 0

zkp = 0

xe1 = 0 xe1 = 1

LPj+1

...

...

LPj

zk2 = 0 zk2 = 1

stage 0: (Root Node) Solution of the LP relaxation

stage 1: Branching on variables z

stage 2: Branching on variables x

Figure 4.10: Scheme of the enumeration tree.

Chapter 5

Heuristic Approaches

In this chapter we present different heuristic approaches to the CPARP. These
methods generate feasible solutions and thus lower bounds for the problem.
Their quality may be evaluated by means of the upper bounds given by the
solution to the LP relaxation presented in Chapter 4. Heuristic methods are
also a very useful tool in exact algorithms, since the associated bounds can be
used for pruning unpromising branches of the search tree.

The first part of this chapter concentrates of constructive heuristics. We
present two different types of such methods. The first type is based on the idea
of merging clusters in the most promising ways, whereas in the second type, the
constructive heuristic is based on the idea of building feasible solutions starting
from a spanning tree through a set of clusters. The second part of the chapter
describes improvement methods based on local search that have been considered.

For simplicity of the heuristic methods that we apply, we work again on a
complete graph. Therefore, any edge can be used at any stage of the heuris-
tics. However, one might expect that edges that have been eliminated by some
dominance relation in Chapter 3 will not appear in the final solutions.

A solution will be represented by a multiset containing all the edges that are
serviced or traversed in the solution. When a demand edge is both serviced (with
profit) and traversed (without profit) or when a non-demand edge is traversed
two times, such an edge will appear twice in the multiset. Throughout, the
second traversal (so, without profit) of a demand edge or any traversal of a
non-demand edge is referred to as a non-profit traversal of an edge.

From an heuristic point of view a difficulty that we have to face when han-
dling the demand clusters is that these components are not necessarily Eulerian.
We denote Cek, k ∈ {0, . . . , p} to the Eulerian graphs of minimum cost contain-
ing components Ck. It is well-known that these Eulerian components can be

69

70 CHAPTER 5. HEURISTIC APPROACHES

found by solving a perfect matching problem on the graph induced by the D-odd
vertices of Ck.

The value c(Cek) represents the overall cost of the links of γ(Ck) in any
solution to the CPARP that services cluster k, if the cluster is connected with
the rest of the solution by means of any D-even vertex.

In Figure 5.1(a) a star shaped cluster is displayed. Close to edges are their
profits in light over their costs in black. Its corresponding Cek is shown in
5.1(b). Once the component is made Eulerian we can define the net profit
pek = b(Ck)− c(Cke). As can be seen in Figure 5.1(b), c(Cek) = 18, while the net
profit pek = 1.

2

3

4

5

6
3

2
1

11
5

(a)

2

3

4

5

6
3

2
1

11
5

(b)

Figure 5.1: (a) A cluster. Profits in light, costs in black; (b) The corresponding set
Ce

k with cost c(Ce
k) = 18 and profit pe

k = 1.

5.1 Constructive heuristics

Several ideas for finding feasible solutions in small computation times have been
tested. Next we present two types of constructive heuristics based on simple
ideas. Both use different criteria for building solutions that service clusters that
seem promising.

5.1.1 Merging clusters heuristic

In this method, not only Cek is used. For a given cluster k ∈ {0, . . . , p} we will
also define a Cu,vk for each pair of D-odd vertices u, v ∈ Vk. We denote Cu,vk the

5.1. CONSTRUCTIVE HEURISTICS 71

(non-Eulerian) graph of minimum cost containing Ck, in which the only odd
vertices are u and v. In this way, the value c(Cu,vk) represents the overall cost
of the links of γ(Ck) in any solution that services cluster k, if the cluster were
connected with the rest of the solution by means of u and v.

2

3

4
5

6
3

2
1

11
5

(a)

2

3

4
5

6
3

2
1

11
5

(b)

2

3

4
5

6
3

2
1

11
5

(c)

2

3

4
5

6
3

2
1

11
5

(d)

2

3

4
5

6
3

2
1

11
5

(e)

2

3

4
5

6
3

2
1

11
5

(f)

Figure 5.2: Auxiliary graphs defined from the cluster of Figure 5.1 ordered by profits:
(a) p(C2,5

k) = 9; (b) p(C2,4
k) = 7; (c) p(C2,3

k) = 6; (d) p(C4,5
k) = 5; (e) p(C3,5

k) = 4;
(f) p(C3,4

k) = 2;

Figure 5.2 depicts these auxiliary graphs for the example of Figure 5.1. The
number of graphs Cu,vk for each cluster is d(d− 1)/2 being d the number of D-
odd vertices of cluster Ck. Also, the associated profit obtained when servicing
cluster k using the edges of Cu,vk is p(Cu,vk) = b(Ck)− c(Cu,vk).

The heuristic method of merging clusters makes use of a priority queue for
each cluster using the above profits as priorities in such a way that Cek will be
considered only after all the Cu,vk have been discarded.

The main idea of this heuristic is to start from some feasible solution, as for
instance the Eulerian cluster Ce0 , and iteratively merge clusters in the solution in
a greedy fashion, one at a time, until there are no more improvements. At each
iteration we look for the best cluster to be merged with the current solution.
Let Gt denote the current solution at iteration t, and let π(Gt) denote the set
of clusters serviced by Gt. Observe that there are four possibilities for merging
a cluster Ck, k /∈ π(Gt) into Gt:

72 CHAPTER 5. HEURISTIC APPROACHES

Gt
v

u
j

i Ck

(a)

Gt
v

u
i

Ck

(b)

Gt

u
j

i Ck

(c)

Gt

u
i

Ck

(d)

Figure 5.3: The four possibilities of merging a new cluster Ck in the current solution
Gt. (a) The traversal of edge uv in light is substituted by the cluster Ck through its
vertices i and j adding the dashed edges to the current solution Gt; (b) The traversal of
edge uv in light is substituted by the cluster Ck accessed through the single vertex i twice,
introducing the dashed edges; (c) The cluster Ck is inserted (connecting its vertices i
and j with vertex u), thus inserting the two edges in dashed lines; (d) Cluster Ck is
inserted in the current solution at the vertex u, introducing twice the edge in dotted
line.

1. merge-edge-odd : We substitute the traversal without profit of an edge
e = uv ∈ Gt by the cluster Ci,jk , not in Gt. The new cluster Ci,jk must
be connected with the current solution Gt by means of two edges that
connect two different D-odd vertices i, j ∈ Vk with u and v. That is, for
each traversal without profit e = uv ∈ Gt, and for each k /∈ π(Gt), it
is necessary to identify the pair of D-odd vertices i, j ∈ Vk that give the
maximum profit. The solution is updated toGt := Gt∪Ci,jk ∪{ui, jv}\{uv}
(see Figure 5.3(a)).

2. merge-edge-even: We substitute a traversal without profit of an edge e =
uv ∈ Gt by a component Cek which is connected with the partial solution
by means of two edges that connect a D-even vertex i ∈ Vk with u and
v. That is, for each traversal without profit e = uv ∈ Gt, and for each
k /∈ π(Gt), it is necessary to identify the D-even vertex i ∈ Vk that gives
the maximum profit from the substitution of the traversal of the edge
e = uv by component Ck. Once i is identified, the partial solution is
updated to Gt := Gt ∪ Cek ∪ {ui, iv} \ {uv} (see Figure 5.3(b)).

3. merge-vertex-odd : This case is similar to merge-edge-odd with the only
difference that the two D-odd vertices i, j ∈ Vk are connected to the same
vertex u of Gt, so no edge is removed. Now, Cu,vk is inserted in the solution.
That is Gt := Gt ∪ Ci,jk ∪ {ui, ju} (see Figure 5.3(c)).

4. merge-vertex-even: This case is similar to merge-edge-even with the only

5.1. CONSTRUCTIVE HEURISTICS 73

difference that the D-even vertex i ∈ Vk is connected to the same vertex
u in Gt with two copies of the edge ui. Again, no edge of Gt is removed,
and Cu,vk is inserted. That is Gt := Gt ∪Cek ∪ {ui, ui} (see Figure 5.3(d)).

In Algorithm 5.1 there are four calls to procedures corresponding to the four
possibilities of merging described above. Each one of them returns a logical value
indicating whether or not the solution Gt has been improved due to a successful
merging of that type. Parameters in these calls are merely orientative. In the
core of each of these four procedures the priority queue for cluster Ck is used
extensively.

int MERGE_ALL(Gt)
{

repeat
{

for each traversal without profit of edge edge e = uv ∈ Et)
{

for each cluster k /∈ π(Gt)
{

HasImproved = MERGE_E_ODD(Gt, e, Ck)
if (NOT HasImproved)
HasImproved = MERGE_E_EVEN(Gt, e, Ck)

}
}
if (NOT HasImproved) {
for each vertex u ∈ V t
{

for each cluster k /∈ π(Gt)
{

HasImproved = MERGE_V_ODD(Gt, u, Ck)
if (NOT HasImproved)
HasImproved = MERGE_V_EVEN(Gt, u, Ck)

}
}

}
} while (HasImproved)
return z(Gt)

}

Algorithm 5.1 Heuristic for merging clusters.

The kernel of this heuristic is detailed in the Algorithm 5.1. The four func-
tions called in it use the priority queues of cluster Ck in order to find the
minimum cost links that can be used to introduce that cluster into the solution.
As can be seen, the function receives the current solution as its input parameter.

74 CHAPTER 5. HEURISTIC APPROACHES

Several tests have been done with different initial solutions. Not only Ce0 but
also all other Cek, k ∈ {1, . . . , p}. Observe that in these latter cases, some action
must be taken when the depot does not appear on the final solution.

To some extent the above heuristic is similar to the process described in
Dror and Langevin [46] for transforming the directed Clustered Rural Postman
Problem in a Generalized Traveling Salesman Problem.

The complexity of this heuristic is dominated by the complexity of the initial
phase that builds the graphs Ci,jk . Observe that once the pair i, j is fixed, finding
Ci,jk requires O(n3). Since the number of D-odd pairs is bounded by O(n2), the
overall complexity is O(n5).

As an example, Figure 5.4 shows the merging clusters evolution on the in-
stance graph P02 of the Christofides benchmark.

d 2

3

4

C0

(a)

d 2

3

4

5

6
7

C0

C1

(b)

d 2

3

4

5

6
7

8

9

1011

12

C0

C1C2

(c)

Figure 5.4: Iterations made by the merging-cluster heuristic: (a) G0. Initial solution
equal to Ce

0 . (b) G1. Solution after the first merging (merge-edge-even). (c) G2.
An Optimal solution obtained after de second iteration (merge-vertex-odd) by merging
clusters.

5.1.2 Spanning tree heuristic

Next we present a heuristic algorithm based on spanning trees. The basic idea
of this heuristic consists of finding a minimum cost spanning tree on a suitable
subgraph and then obtaining the minimum cost Eulerian graph that contains the
spanning tree. This idea was first proposed by Christofides [29] for the TSP and
after by Frederickson for the RPP [57]. For the RPP the idea of Frederickson
was further exploited by Fernández et al., [10], by taking into account in several
ways the information given by the optimal solution to the LP relaxation. Next
we present a heuristic that is the adaptation to the CPARP of the heuristic of
Fernández et al. [53]. In particular, first we have to decide the clusters that are
going to be serviced, since once the set of serviced clusters has been decided,

5.1. CONSTRUCTIVE HEURISTICS 75

the problem reduces to a rural postman problem. Then, we apply the heuristic
of [10].

Throughout, let K̂ ⊆ {0, . . . , p} denote the set of clusters to be serviced. Let
also GK̂ = (VK̂ , EK̂) denote an auxiliary graph where VK̂ contains one vertex
associated with each component with index in the set K̂. Each pair of vertices
k1, k2 ∈ VK̂ , k1 6= k2, is connected by an edge.

The heuristic has two phases. In the first one we select the clusters that
are going to be serviced as the ones of K̂, and we identify the minimum cost
spanning tree T in GK̂ . The result of the first phase is the connected structure
T ∪ {Ck | k ∈ K̂}. Observe that some vertices may have odd degree in T ∪
{Ck | k ∈ K̂}. Thus, in the second phase we find the minimum cost perfect
matching M in the subgraph of Kn induced by the vertices with odd degree in
T ∪ {Ck | k ∈ K̂}.

The above scheme can be applied with different choices for the set K̂ and
with different cost functions for building the minimum spanning tree. In our
implementation, we exploit the information of the solution of the LP relaxation.

Given that the solution of the LP relaxation uses the best possible elements,
the idea is to try to obtain a feasible solution that is as similar as possible to
that fractional solution. Hereby, the heuristic solution will service all clusters
that in the solution to the LP relaxation their associated variables have positive
value.

Therefore, we consider K̂ = K(z∗) = {k ∈ {0, . . . , p} | z∗k > 0} where
(x∗, y∗, z∗) denote the optimal solution to the LP relaxation.

Then, we repeat the above procedure three times, each of them with a dif-
ferent cost function for building the spanning tree in the first phase. These are
the following:

For g = {vk1 , vk2} ∈ Ez∗ ,

• c1g = min{ce : e = {i, j} ∈ H2, i ∈ Vk1 , j ∈ Vk2}.

• c2g = min{1− x∗e : e = {i, j} ∈ H2, i ∈ Vk1 , j ∈ Vk2}.

• c3g = min{(ce)(1− x∗e) : e = {i, j} ∈ H2, i ∈ Vk1 , j ∈ Vk2}.

A scheme of the heuristic is given in Algorithm 5.2.

In general, in heuristic methods different policies for tie breaking may result
in different solutions. This is also the case of the above heuristic, where most
often we find ties for building the minimum cost spanning tree in the first phase.

76 CHAPTER 5. HEURISTIC APPROACHES

1. Define K̂ and the auxiliary graph GK̂ = (VK̂ , EK̂) .

2. For r = 1, 2, 3

1.1 Find a minimum spanning tree T r in GK̂ using function
cr.

1.2 Identify the set of odd vertices Or ⊆ V in the graph
T r ∪ (∪k∈K̂Ck).

2.1 Find a minimum cost perfect matching Mr, using the
original cost function c in the subgraph of Kn induced
by the vertex set Or.

2.2 Sr = T r ∪Mr is a feasible solution to CPARP.

Algorithm 5.2 Spanning tree heuristic.

Next we describe the policy for tie breaking that we have used, which depends
on the cost function that is considered. A policy of tie breaking might be seen
as a sequence of conditional expressions, in which the position of the condition
in the sequence defines its priority. This means that a condition is checked only
when all previous ones are true. In the above heuristic the following policies
were used:

• Cost function c1: Ties appear when two or more edges connecting the
same pair of clusters have equivalent minimum cost. Then we break ties
by selecting the edge which is incident with a smallest number of D-even
vertices.

• Cost function c2: Ties appear when two or more edges connecting the same
pair of clusters have equivalent maximum solution values. Then, among
edges connecting the same pair of clusters, the one that has minimum cost
on the original data graph is chosen. If we keep on having ties, then we
select the edge incident with a smallest number of D-even vertices.

• Cost function c3: In this case we proceed as in the case of c2.

5.2 Local Search

Next we describe two simple improvements that we apply to the feasible heuris-
tics presented so far. In both cases we only do the move if it results in a feasible
solution with a better objective function value than the original one. The two
improvements have been called shortcuts and interchanges.

5.2. LOCAL SEARCH 77

5.2.1 Shortcuts

Let S denote the current solution and let P (u, v) ∈ S, be a path of edges which
are traversed without profit, between vertices u and v. If cu,v < c(P) we say
that edge uv is a shortcut for path P . Given a solution graph, any path without
profit can be substituted by the corresponding edge when its cost is lower. In
fact, this is just the result of repeated applications of the triangle inequality.
While it is clear that the result of this operation will result in a solution that
satisfies the degree constraints of the vertices, it is possible that the resulting
solution be no longer connected. Therefore, in the context of CPARP there
is an obvious restriction to the application of this idea, which comes from the
necessity of connected solutions.

5.2.2 Interchanges

We consider possible interchanges of two edges e1 = u1v1 and e2 = u2v2 in the
current solution by edges f1 = u1v2 and f2 = u2v1 not in the solution. This will
be profitable when ce1 + ce2 > cf1 + cf2 . The vertices u1 and u2 must be D-odd
and belong to the same component in order to keep the connectivity, and no
restriction is imposed on the vertices v1 and v2. Observe that, if the original
solution is connected, the result of this interchange will also be connected and
the parity of the nodes will not change.

v1

v2

u2

u1

e1
e2

f1

f2

Figure 5.5: An intermediate heuristic solution to some initial data graph.

In Figure 5.5, we illustrate this idea graphically. If (ce1 + ce2) > (cf1 + cf2),
then we would interchange edges e1 and e2, by f1 and f2.

The procedure is given in Algorithm 5.3. The function other(vertex u,edge e)
returns the index of the neighbor of vertex u in edge e. This algorithm returns
a logical value indicating whether the solution has been improved. Its running
time is in O(n4

o) being no the number of Dodd vertices in the solution.

78 CHAPTER 5. HEURISTIC APPROACHES

bool INTERCHANGE_DODD()
{

for_each cluster k in S
{

for_each Dodd vertex u1 in V (Ck)
{

edge e1 = (δ(u1) ∩ S) \D
vertex v1 = other(u1, e1)
for_each Dodd vertex u2 in V (Ck), u2 6= u1 and u2 6= v1
{

edge e2 = (δ(u2) ∩ S) \D
vertex v2 = other(u2, e2)
if (ce1 + ce2 > cu1v2 + cu2v1)
{
S = S ∪ {eu1v2 , eu2v1} \ {e1, e2}
return TRUE

}
}

}
}
return FALSE

}

Algorithm 5.3 Interchanges heuristic improvement.

Chapter 6

Computational Results

In this chapter we present the results of the computational experiments that we
have run with the algorithms presented in the previous chapters.

All the programs have been coded in C++. For the optimization of the
linear problems, the routines of the CPLEX 9.0 callable library have been used.
All the tests were run on an Intel CPU T2300 at 1.66 MHz, with 1GB.

Given that there were no available benchmark instances, we generated CPARP
instances from the PRPP instances used in [10]. These, were in turn generated
from a well known set of benchmark of RPP instances from [40, 69, 30]. For gen-
erating the PRPP instances, in [10], Aráoz, Fernández and Meza kept the cost
function c and assigned random profits b to the edges. The random distribution
used there depended on the nature of the edges:

• If e was a required edge for the RPP, then be ∼ U [ce, 3ce] in the PRPP.

• If e was a non-required for the RPP, then be ∼ U [0, ce] in the PRPP.

In all cases vertex 1 was taken as the depot.

To transform the PRPP instances of [10] to instances for the CPARP, the
set of demand edges has been defined as the set of required edges in the original
RPP instances, and all profits assigned to non-demand edges have been set to
zero.

Since the original 118 RPP instances are usually divided into five groups,
we have also classified in five groups our CPARP instances, and we have named
them like the original RPP instances. The group ALBAIDA contains two prob-
lems, ALBAIDAA and ALBAIDAB (see Corberán and Sanchis [40]). The group

79

80 CHAPTER 6. COMPUTATIONAL RESULTS

CHRISTOFIDES contains 24 instances (labelled P) of Christofides et al. [30].
The last three groups contain instances from Hertz et al [69]: The DEGREE are
36 instances with vertices of degree 4 (labelled D), the RANDOM are 20 ran-
domly generated instances (labelled R), and the GRID with 36 grid instances
(labelled G).

This chapter is partitioned in three sections. First, the tables showing main
parameters for the original data graphs are presented. After that, the results are
listed and the last section presents the results of using the CPARP algorithm
for solving the RPP.

6.1 Original Data Graphs

The main characteristics of the instances that we have used are listed in Ta-
ble 6.1.

|V | number of vertices in the original graph
|E| number of edges in the original graph
|D| number of demand edges
p number of clusters
n number of vertices in the transformed graph Kn

m number of edges in the transformed graph Kn, m = n(n− 1)/2
Ex number of variables of type x
Ey number of variables of type y

Table 6.1: Column headings for tables related to the input data graphs.

The number of clusters is not exactly the number of connected components
of the graph induced by demand edges. When the depot cluster has no edges,
it is counted as a cluster itself.

6.1.1 Albaida Instances

The first group contains two instances, ALBAIDAA and ALBAIDAB, obtained
from a graph of the town of Albaida, Spain (see Corberán and Sanchis [40]). In
Table 6.2 their size parameters are shown.

Note that in both cases, when the original graphs are transformed the num-
ber of vertices has not been reduced. Therefore, in the original instances all
vertices have some demand edge in their cut. The costs of the edges of these
instances range from 12 to 388, and the profits are between 17 and 1019.

6.1. ORIGINAL DATA GRAPHS 81

name |V | |E| |D| p n m Ex Ey
ALBAIDAA 102 160 99 10 102 5151 4217 528
ALBAIDAB 90 144 88 11 90 4005 3672 1151

Table 6.2: Main parameters of the ALBAIDA instances.

6.1.2 Christofides Instances

The second group contains 24 instances, labelled P, of Christofides et al. [30].
Their sizes are listed in Table 6.3.

name |V | |E| |D| p n m Ex Ey
P01 11 13 7 4 11 55 53 4
P02 14 33 12 4 14 91 86 14
P03 28 57 26 4 28 378 323 114
P04 17 35 22 3 17 136 118 41
P05 20 35 16 5 20 190 177 32
P06 24 46 20 7 24 276 270 41
P07 23 47 24 3 23 253 226 27
P08 17 40 24 2 17 136 108 19
P09 14 26 14 3 14 91 81 13
P10 12 20 10 4 12 66 64 22
P11 9 14 7 3 9 36 34 7
P12 7 18 5 3 7 21 21 2
P13 7 10 4 3 7 21 21 2
P14 28 79 31 6 28 378 356 80
P15 26 37 19 8 26 325 321 31
P16 31 94 34 7 31 465 442 146
P17 19 44 17 5 19 171 165 22
P18 23 37 16 8 23 253 247 16
P19 33 54 29 7 33 528 512 45
P20 50 98 63 7 50 1225 1139 439
P21 49 110 67 6 49 1176 1079 358
P22 50 184 74 6 50 1225 1134 333
P23 50 158 78 6 50 1225 1133 385
P24 41 125 55 7 41 820 785 229

Table 6.3: Main parameters of the CHRISTOFIDES instances.

Note that, like in the ALBAIDA instances, in all cases |V | = n. This means
that all original instances had all vertices with some demand edge in their cuts.
Observe also that all these datasets correspond to small graphs (none has more
than 50 vertices). The number of demand edges ranges from 4 to 78, and the
number of clusters from 3 to 8. This results in instances with a number of x
variables ranging from 21 to 1139, and a number of y variables between 2 and

82 CHAPTER 6. COMPUTATIONAL RESULTS

439. All the costs of these instances are between 1 and 20, while the profits
range from 1 to 40.

6.1.3 Hertz Degree Instances

This group is composed by 36 instances, labelled D. The vast majority, with
vertices of degree 4. They are summarized in Table 6.4.

name |V | |E| |D| p n m Ex Ey

D0 16 32 3 2 5 10 10 1
D1 16 31 6 4 10 45 43 6
D2 16 31 9 4 12 66 64 12
D3 16 32 8 3 10 45 43 6
D4 16 31 8 5 12 66 64 11
D5 16 31 12 4 13 78 74 19
D6 16 32 11 5 14 91 89 14
D7 16 31 12 5 15 105 100 20
D8 16 31 16 4 16 120 113 27
D9 36 72 12 8 20 190 185 9
D10 36 72 10 8 18 153 153 10
D11 36 72 17 12 29 406 404 19
D12 36 72 17 8 25 300 291 34
D13 36 72 22 6 27 351 322 90
D14 36 72 30 9 35 595 579 63
D15 36 72 32 6 33 528 490 89
D16 36 72 34 5 35 595 528 117
D17 36 72 38 6 36 630 596 70
D18 64 128 28 15 43 903 895 35
D19 64 128 29 11 40 780 740 61
D20 64 128 27 12 38 703 684 51
D21 64 128 47 10 56 1540 1429 160
D22 64 128 47 12 57 1596 1503 151
D23 64 128 51 9 55 1485 1410 140
D24 64 128 68 6 61 1830 1615 251
D25 64 128 62 9 61 1830 1678 340
D26 64 128 75 5 62 1891 1663 364
D27 100 200 50 23 71 2485 2452 252
D28 100 200 55 20 71 2485 2441 254
D29 100 200 50 21 69 2346 2318 123
D30 100 200 86 14 89 3916 3669 970
D31 100 200 90 11 87 3741 3487 547
D32 100 200 81 16 88 3828 3657 588
D33 100 200 121 9 100 4950 4370 1301
D34 100 200 118 10 96 4560 4083 933
D35 100 200 116 9 96 4560 4113 817

Table 6.4: Main parameters of the DEGREE instances.

6.1. ORIGINAL DATA GRAPHS 83

The number of vertices range from 16 to 100 while the edges from 31 to 200.
The number of demand edges ranges from 3 to 121, and that of the clusters
from 2 to 21. This factor has a great impact on the cpu time of the algorithms.
All these values lead the number of x variables to range from 10 to 4370, and of
y variables from 1 to 1301. All the costs are between 1 and 121, and the profits
between 1 and 260.

6.1.4 Hertz Random Instances

We also run the algorithm over 20 randomly generated instances, labelled R.
All of them are small graphs. Their main characteristics are shown in Table 6.5.

name |V | |E| |D| p n m Ex Ey
R0 20 37 3 4 7 21 21 3
R1 20 47 4 5 9 36 36 4
R2 20 47 4 4 8 28 28 3
R3 20 75 7 4 11 55 55 5
R4 20 60 6 4 10 45 45 6
R5 30 70 7 5 12 66 66 7
R6 30 112 10 5 15 105 101 9
R7 30 70 7 5 12 66 64 4
R8 30 111 11 6 17 136 132 13
R9 30 111 11 7 18 153 148 15
R10 40 130 13 9 22 231 231 13
R11 40 103 10 6 16 120 118 7
R12 40 82 8 6 14 91 89 7
R13 40 203 18 9 25 300 291 20
R14 40 203 18 8 25 300 281 19
R15 50 203 20 9 28 378 365 31
R16 50 162 15 12 27 351 349 12
R17 50 130 13 6 19 171 160 12
R18 50 203 19 7 26 325 302 26
R19 50 203 19 8 27 351 336 34

Table 6.5: Main parameters of the RANDOM instances.

As can be seen, the sizes range from 20 nodes and 37 edges to 50 nodes and
203 edges. The number of demand edges goes from 3 to 20 and the number of
clusters from 4 to 12. This results in transformed graphs with a number of nodes
ranging from 7 to 28. In these instances the number of x variables ranges from
21 to 365, whereas the number of y variables goes from 3 to 34. The RANDOM
instances have the largest variability in the cost and profits among all on which
we have worked on. All the costs are between 143 and 4284, while the profits
range from 213 to 12579.

84 CHAPTER 6. COMPUTATIONAL RESULTS

6.1.5 Hertz Grid Instances

The last group contains 36 instances corresponding to grid graphs, labelled G.
They are summarized in Table 6.6.
.

name |V | |E| |D| p n m Ex Ey

G0 16 24 3 4 7 21 21 3
G1 16 24 5 6 11 55 55 5
G2 16 24 4 5 9 36 36 4
G3 16 24 8 5 13 78 78 5
G4 16 24 7 6 13 78 78 6
G5 16 24 7 4 10 45 43 10
G6 16 24 13 4 16 120 112 36
G7 16 24 8 5 13 78 76 10
G8 16 24 9 5 13 78 76 16
G9 36 60 11 8 19 171 166 12
G10 36 60 13 10 23 253 253 15
G11 36 60 15 9 24 276 270 13
G12 36 60 26 8 34 561 523 83
G13 36 60 23 6 27 351 334 25
G14 36 60 25 7 31 465 439 30
G15 36 60 35 5 34 561 503 101
G16 36 60 30 7 33 528 491 67
G17 36 60 34 5 35 595 537 93
G18 64 112 24 11 35 595 584 43
G19 64 112 27 13 40 780 760 86
G20 64 112 27 15 42 861 848 70
G21 64 112 46 9 50 1225 1115 238
G22 64 112 47 9 56 1540 1409 328
G23 64 112 50 12 59 1711 1614 162
G24 64 112 68 4 62 1891 1605 386
G25 64 112 61 6 61 1830 1621 307
G26 64 112 66 7 62 1891 1637 520
G27 100 180 41 19 60 1770 1755 80
G28 100 180 49 21 69 2346 2276 324
G29 100 180 44 20 64 2016 1988 157
G30 100 180 73 13 82 3321 3112 383
G31 100 180 77 18 92 4186 3956 630
G32 100 180 82 11 91 4095 3706 563
G33 100 180 113 4 97 4656 4000 602
G34 100 180 107 9 100 4950 4394 710
G35 100 180 109 6 97 4656 3991 790

Table 6.6: Main parameters of the GRID instances.

As can be seen, the sizes range from 16 nodes and 24 edges to 100 nodes and
180 edges. The number of demand edges goes from 3 to 113 and the number
of clusters from 4 to 21. This results in transformed graphs with a number

6.2. RESULTS 85

of nodes ranging from 7 to 100. In these instances the number of x variables
ranges from 21 to 4394, whereas the number of y variables goes from 3 to 790.
As opposite to the previous group, in all these instances the costs are all equal
to 1, and their profits range from 1 to 3.

6.2 Results

In this section we present the obtained results. First, the values related to the
optimal solution of the LP relaxation (and so, related to the root node of the
exploration tree) are listed in one table for each set of data graphs. After that,
one more table is also presented with the values related to the exact algorithm
only for those instances that have not been optimality solved at the root node.

6.2.1 Results of the LP Relaxation

The solutions to the LP relaxation give us upper bounds for the exploration
phase, when no optimal solution is already found. In Table 6.7 the columns
related to the results of the optimal solutions of the LP relaxations are listed.

Zr linear relaxation optimal value
tZr

required CPU time for the linear relaxation solution (in seconds)
Z0 linear relaxation first iteration solution value
iter number of LP problems solved
con #(≤) connectivity iterations (connectivity inequalities added)
coc #(≤) cocircuit iterations (cocircuit inequalities added)

instances with integer solution to the LP relaxation are marked with a X

Table 6.7: Column headings for tables related to the root node of the exploration
tree.

Since all instances marked with X in Tables 6.8 - 6.12 are optimally solved at
the root node, they will not appear in the final tables. Note also that in this way
we can compare the improvements between the value of the upper bound from
the initial solution, Z0, and the one given at the end of the iteration algorithm,
Zr.

For one of the ALBAIDA instances, we have already an integer solution to
the linear relaxation problem. The problem given by ALBAIDAA is already
optimally solved and therefore no more data will be given about it. The second
one, ALBAIDAB, has not been optimally solved yet, and thus it requires to
start the exploration. The values for both instances are given in Table 6.8.

86 CHAPTER 6. COMPUTATIONAL RESULTS

name Zr tZr Z0 iter con(≤) coc(≤)
ALBAIDAA 5179.00 5.890 5595.00 11 2(15) 8(23) X
ALBAIDAB 3394.29 8.672 3870.00 18 8(47) 9(34)

Table 6.8: LP solutions of the ALBAIDA instances.

As can be observed in Table 6.8, for instances with more than 100 vertices
and 10 or 11 clusters, we have both solution times less than 10 seconds. Note
also that the number of global iterations is reasonably small. This number is
somehow related to the improvement done by the separation phases. In fact, in
both cases, the value of the solution of the initial model exceeds to that of the
LP relaxation in less than a 15%.

The values for the CHISTOFIDES instances are given in Table 6.9.

name Zr tZr
Z0 iter con(≤) coc(≤)

P01 3.00 0.000 3.00 1 0(0) 0(0) X
P02 28.00 0.047 49.00 4 2(5) 1(4)
P03 47.00 0.281 52.00 5 2(5) 2(10) X
P04 33.00 0.047 37.00 3 1(2) 1(4)
P05 19.00 0.031 26.00 2 1(3) 0(0) X
P06 47.00 0.063 48.00 2 0(0) 1(4) X
P07 73.00 0.062 76.00 2 1(2) 0(0) X
P08 72.00 0.032 73.00 2 0(0) 1(2) X
P09 38.00 0.015 42.50 4 1(2) 2(6) X
P10 35.00 0.015 43.00 3 1(2) 1(4) X
P11 9.00 0.000 9.00 1 0(0) 0(0) X
P12 8.00 0.000 10.00 2 1(2) 0(0) X
P13 3.00 0.016 3.00 1 0(0) 0(0) X
P14 98.17 0.234 106.00 9 5(16) 3(12)
P15 15.00 0.063 21.00 3 2(5) 0(0) X
P16 73.00 0.297 83.00 7 3(10) 3(10)
P17 22.00 0.047 29.00 5 2(5) 2(7)
P18 0.80 0.125 22.00 11 8(28) 2(6) X
P19 49.00 0.157 52.00 4 2(7) 1(3) X
P20 189.67 1.140 211.00 10 4(15) 5(16)
P21 221.00 0.781 231.00 8 4(14) 3(9)
P22 398.00 0.797 405.00 7 3(12) 3(9)
P23 298.00 0.656 307.50 6 4(14) 1(1)
P24 173.00 0.375 184.00 4 2(11) 1(5)

Table 6.9: LP solutions of the CHRISTOFIDES instances.

There are 14 out of 24 optimally solved datasets that do not resort to ex-
ploration tree, i.e. 13 optimal solutions of the LP relaxation that are integer

6.2. RESULTS 87

and P18, solved optimally with empty solution. Column tZr
of Table 6.9 shows

that all the instances required less than one second of the cpu time but P20,
that required slightly more. The values obtained with the initial model, Z0,
are reasonably close to the final, Zr. This leads to give such small number of
iterations (all but two cases are smaller than 10 iterations).

With respect to the DEGREE instances, the values are depicted in Ta-
ble 6.10. Here, the number of integer solutions rises up to 27 out of 36.

name Zr tZr Z0 iter con(≤) coc(≤)
D0 109.00 0.000 109.00 1 0(0) 0(0) X
D1 0.00 0.015 37.00 2 1(2) 0(0) X
D2 123.00 0.031 123.00 1 0(0) 0(0) X
D3 109.00 0.031 109.00 1 0(0) 0(0) X
D4 35.00 0.000 35.00 1 0(0) 0(0) X
D5 270.00 0.016 270.00 1 0(0) 0(0) X
D6 115.00 0.015 149.00 2 1(4) 0(0) X
D7 55.00 0.032 175.00 4 3(8) 0(0) X
D8 367.00 0.015 387.50 2 1(3) 0(0) X
D9 80.00 0.047 107.50 3 2(4) 0(0) X
D10 0.00 0.078 5.00 2 1(2) 0(0) X
D11 136.00 0.235 225.50 6 5(36) 0(0) X
D12 103.00 0.094 141.50 4 2(5) 1(3) X
D13 496.00 0.313 580.25 12 4(12) 7(18) X
D14 545.00 0.328 594.00 6 3(11) 2(11) X
D15 528.50 0.203 543.50 5 2(4) 2(6)
D16 801.00 0.328 856.50 7 2(6) 4(13)
D17 871.00 0.234 909.50 3 0(0) 2(7) X
D18 256.00 0.844 362.00 9 6(42) 2(6) X
D19 282.00 0.250 293.00 4 2(9) 1(3) X
D20 180.00 0.250 262.00 3 2(15) 0(0) X
D21 768.00 1.266 810.50 10 7(27) 2(8) X
D22 733.00 2.000 801.00 13 8(59) 4(16) X
D23 738.00 1.109 832.00 10 6(21) 3(12)
D24 1281.00 0.516 1281.00 1 0(0) 0(0) X
D25 1012.60 1.765 1045.00 9 2(11) 6(18)
D26 1310.00 0.797 1400.50 4 2(4) 1(6) X
D27 241.00 37.797 492.00 67 64(778) 2(16) X
D28 483.00 5.828 597.50 21 18(209) 2(8) X
D29 175.00 7.734 300.25 29 27(309) 1(7) X
D30 933.00 9.485 1190.00 26 23(155) 2(15)
D31 1195.80 5.719 1287.00 14 8(48) 5(26)
D32 720.83 9.235 780.50 15 7(37) 7(22)
D33 1567.50 5.781 1669.83 10 6(26) 3(21)
D34 1444.00 9.812 1561.00 18 10(54) 7(23)
D35 1579.00 5.922 1647.50 12 2(15) 9(24) X

Table 6.10: LP solutions of the DEGREE instances.

As can be observed in Table 6.10, in general the number of iterations is

88 CHAPTER 6. COMPUTATIONAL RESULTS

small, and also the cpu times required are very satisfactory in almost all in-
stances. Instance D27 required more than half a minute to be solved, needing
67 iterations. All but this case required less than 30 iterations and there is a
considerable number of instances that required less than 10 iterations.

The optimal solution values of the LP relaxations of the RANDOM instances
can be seen in Table 6.11. The number of integer solutions in this group is 19

name Zr tZr
Z0 iter con(≤) coc(≤)

R0 0.00 0.016 0.00 1 0(0) 0(0) X
R1 236.00 0.015 2982.00 3 2(7) 0(0) X
R2 0.00 0.000 4503.00 2 1(2) 0(0) X
R3 8605.00 0.016 9545.50 2 1(2) 0(0) X
R4 11027.00 0.016 13412.50 3 1(3) 1(3) X
R5 0.00 0.016 2772.00 3 2(4) 0(0) X
R6 6681.00 0.062 9566.00 3 2(6) 0(0) X
R7 3556.00 0.016 5304.00 2 1(3) 0(0) X
R8 1132.00 0.063 11057.00 6 4(12) 1(2) X
R9 7079.00 0.078 11276.00 6 2(7) 3(8) X
R10 6025.00 0.219 11971.00 10 9(46) 0(0) X
R11 2603.00 0.031 5086.50 2 1(2) 0(0) X
R12 0.00 0.016 8819.00 3 2(5) 0(0) X
R13 18059.00 0.250 22443.00 10 5(26) 4(12) X
R14 17023.75 0.250 18914.00 8 4(15) 3(6)
R15 10794.00 0.375 18289.50 13 7(24) 5(8) X
R16 4544.00 0.078 6471.00 3 2(9) 0(0) X
R17 1732.00 0.063 8403.50 3 2(6) 0(0) X
R18 14055.00 0.125 22292.50 5 4(14) 0(0) X
R19 17958.00 0.172 18683.00 3 1(2) 1(4) X

Table 6.11: LP solutions of the RANDOM instances.

out of 20. Only R14 needs to resort to the exploration algorithm. The solution
values of the initial model in Table 6.11 are really far away from those of the
final LP relaxation. However, it is due to the large variability on the costs and
profits of the edges of these instances, since the number of iterations is small
(less than 15 in all cases). Thus, it seems clear that the distance between the
value of the solution of the initial model and the optimal to the LP relaxation
is strongly related to the distribution of the costs and profits of the edges.

Finally, in Table 6.12 the results of the GRID instances are listed. Here we
have 21 of 36 integer solutions. In Table 6.12 we can see again that the required
time for the LP relaxation algorithm is small. The instance that takes more
time is G31, that needs more than 25 seconds, but all the others required less
than 12 seconds.

6.2. RESULTS 89

name Zr tZr Z0 iter con(≤) coc(≤)
G0 0.00 0.000 0.00 1 0(0) 0(0) X
G1 0.00 0.015 1.00 4 3(7) 0(0) X
G2 0.00 0.016 0.50 2 1(2) 0(0) X
G3 2.00 0.047 2.00 1 0(0) 0(0) X
G4 0.00 0.031 2.00 6 4(14) 1(2) X
G5 4.00 0.016 5.00 3 2(5) 0(0) X
G6 7.00 0.031 9.00 4 2(5) 1(3)
G7 1.00 0.016 3.00 4 3(9) 0(0) X
G8 4.00 0.015 5.00 3 2(6) 0(0) X
G9 1.00 0.079 4.50 8 6(26) 1(3)
G10 0.00 0.141 2.00 7 6(31) 0(0) X
G11 3.00 0.093 5.00 4 3(17) 0(0) X
G12 13.00 0.438 16.00 9 4(19) 4(12) X
G13 8.50 0.172 13.00 6 4(13) 1(7)
G14 13.00 0.219 15.00 7 5(19) 1(4) X
G15 23.00 0.156 24.00 2 0(0) 1(3) X
G16 15.50 0.312 19.00 7 5(19) 1(10)
G17 20.00 0.203 20.00 4 2(6) 1(3) X
G18 6.00 0.375 8.50 7 5(39) 1(3)
G19 6.00 0.954 11.00 15 13(99) 1(6)
G20 9.00 0.813 12.00 14 13(114) 0(0) X
G21 29.00 1.125 32.50 11 6(33) 4(15) X
G22 30.00 1.015 33.00 7 4(20) 2(9) X
G23 29.00 1.625 29.00 8 5(39) 2(10) X
G24 50.00 1.578 51.00 10 2(5) 7(25) X
G25 39.00 1.438 42.00 9 4(14) 4(12)
G26 51.00 1.109 54.00 6 3(11) 2(9) X
G27 13.00 3.906 16.00 19 15(201) 3(10)
G28 22.57 11.766 27.00 32 28(289) 3(15)
G29 12.33 5.969 18.00 23 17(154) 5(14)
G30 41.70 10.187 44.50 23 16(114) 6(24)
G31 48.00 26.016 51.00 37 32(353) 4(23)
G32 49.33 5.031 51.00 12 6(25) 5(20)
G33 80.00 2.329 82.00 3 0(0) 2(6) X
G34 76.00 6.453 77.00 13 7(30) 5(21)
G35 78.00 5.312 80.00 11 3(12) 7(21)

Table 6.12: LP solutions of the GRID instances.

In global, we added more connectivity cuts than cocircuit cuts. In 615 itera-
tions we added 4293 connectivity cuts, whereas in 544 iterations we added 1392
cocircuit cuts. This is, a 76% of the total inequalities added in the iterative LP
solver scheme are of connectivity. However, the role of the cocircuit inequalities
is very important and we have observed that they contribute substantially to
the improvement of the upper bounds for the exploration.

90 CHAPTER 6. COMPUTATIONAL RESULTS

6.2.2 Results at the Root Node of the Exact Algorithm

Before starting the branch and cut algorithm the heuristic algorithm explained
in Chapter 5 is applied. The heuristic value of the solution helps pruning the
exploration tree, or even better, it gives directly an optimal solution when the
difference to the LP optimal solution is less than 1.

Next we analyze the results of the heuristic algorithm. In particular, we
observe the quality of the solution obtained with each of the considered cost
functions explained in Subsection 5.1.2 of page 74.

name Zh tZh
Z(c1) Z(c2) Z(c3) Zr

ALBAIDAB 3388 0.515 3388 3308 3388 3394.29
P02 26 0.000 26 26 26 28.00
P04 31 0.016 31 29 31 33.00
P14 89 0.078 89 81 89 98.17
P16 71 0.078 69 71 71 73.00
P17 19 0.016 19 19 19 22.00
P20 180 0.250 180 178 178 189.67
P21 208 0.219 208 202 208 221.00
P22 395 0.188 394 395 393 398.00
P23 295 0.235 295 292 295 298.00
P24 171 0.109 171 171 171 173.00
D15 520 0.078 520 520 520 528.50
D16 758 0.078 752 758 749 801.00
D23 724 0.250 724 724 724 738.00
D25 991 0.250 983 973 991 1012.60
D30 870 0.531 870 798 830 933.00
D31 1162 0.563 1159 1162 1159 1195.80
D32 656 0.609 647 656 647 720.83
D33 1550 0.687 1550 1530 1550 1567.50
D34 1430 0.782 1405 1387 1430 1444.00
R14 15730 0.047 15730 15648 14665 17023.75
G6 6 0.015 6 4 4 7.00
G9 1 0.000 1 1 1 1.00 X
G13 8 0.047 8 8 8 8.50 X
G16 15 0.062 15 15 15 15.50 X
G18 6 0.079 6 6 6 6.00 X
G19 5 0.078 5 5 5 6.00
G25 39 0.172 37 39 39 39.00 X
G27 9 0.250 5 9 5 13.00
G28 17 0.438 13 17 17 22.57
G29 9 0.422 5 9 7 12.33
G30 40 0.344 36 38 40 41.70
G31 44 0.703 40 44 40 48.00
G32 48 0.531 48 46 48 49.33
G34 76 0.516 74 76 76 76.00 X
G35 78 0.484 76 78 78 78.00 X

Table 6.13: Heuristics solution values for no optimally solved graphs.

6.2. RESULTS 91

The results are given in Table 6.13. Only instances that were not optimally
solved with the iterative LP solver scheme are considered. In Table 6.13, Column
Zh is the value of the heuristic solution and tZh

is the cpu time required for
obtaining the heuristic. As could be expected, the cpu times required for the
heuristic algorithm once the LP relaxation has been optimally solved is small
(less than one second) for all the instances, since it is polynomial on p. The
next three columns, Z(ci), i ∈ {1, 2, 3}, are the values of the heuristic solution
calculated with the mentioned costs. Therefore, the column Zh corresponds to
the max{Z(ci)}, for i = 1, 2, 3. Usually c1 gives the best results, that is the
minimum cost in the original data graph between each pair of clusters in the
LP optimal solution. This criterion seems to be correlated with the c3, since
in many instances where the c1 gives the best result, c3 = c1. In other cases,
however, the situation is somehow inverted, and the best result is obtained by
the complementary of the solution value, c2. Finally, in Table 6.13 is also shown
the value of Zr, the optimal value of the LP relaxation already seen in the tables
above.

6.2.3 Results of the Exploration

From the results of the previous tables we can see that after solving the LP
relaxation at the root node, the optimality of the obtained solutions could be
proved for 80 instances. In addition, with the values listed in Table 6.13, the
upper bound allowed us to deduce that the heuristic solution was optimal for 9
more instances. That is, a total of 89 out of the 118 considered instances were
optimally solved at the root node, what means a 75.4%.

Therefore, the number of the remaining graphs not optimally solved yet
raises up to 29 instances. Thus, we run the exact algorithm branching on the
variables explained in Subsection 4.3. Their results follow.

In Table 6.14 Column Z∗ is the optimal solution of the CPARP instance.
Next, below the heading of texp, the cpu time used at the exploration time
is indicated. In the third column, with the heading nodes(Z + X), we have
the number of explored nodes in the search tree. This is, the total number
of nodes explored, and between parenthesis this number is separated on the
number of nodes generated when branching on a z variable, and the number of
nodes generated when branching on a x variable. Observe that most instances
are solved at stage 1 of the tree depicted in Figure 4.10 of Subsection 4.3. Last
column corresponds to the total required cpu time for computing this solution.
Note that the required time is mainly used in the exploration tree.

As can be seen, in general the number of nodes in the exploration is small.
We can observe two pathological cases, P20, and specially, D30, whose required
cpu time goes up until almost one hour. For the remaining instances, the ex-
ploration reduces to a few nodes.

92 CHAPTER 6. COMPUTATIONAL RESULTS

name Z∗ texp nodes(Z +X) tZ∗

ALBAIDAB 3388 1.656 1 (1 + 0) 10.609
P02 26 0.032 3 (0 + 3) 0.063
P04 31 0.094 4 (0 + 4) 0.141
P14 92 4.062 50 (1 + 49) 4.390
P16 72 0.297 2 (1 + 1) 0.578
P17 20 0.172 6 (1 + 5) 0.234
P20 182 97.391 160 (14 + 146) 98.578
P21 214 20.453 43 (0 + 43) 21.281
P22 395 0.781 2 (0 + 2) 1.594
P23 295 0.562 2 (0 + 2) 1.250
P24 171 2.891 19 (0 + 19) 3.297
D15 520 0.125 1 (1 + 0) 0.313
D16 783 1.672 10 (0 + 10) 2.031
D23 724 0.625 2 (2 + 0) 1.797
D25 1011 0.890 2 (1 + 1) 2.734
D30 883 3223.453 830 (61 + 769) 3233.078
D31 1195 1.297 1 (1 + 0) 7.454
D32 720 2.672 1 (1 + 0) 12.063
D33 1550 33.813 19 (2 + 17) 39.688
D34 1436 26.250 8 (2 + 6) 36.375
R14 16944 0.110 1 (1 + 0) 0.360
G6 6 0.032 1 (1 + 0) 0.079
G19 5 1.218 1 (1 + 0) 2.203
G27 13 2.125 1 (1 + 0) 6.157
G28 21 18.672 6 (6 + 0) 30.703
G29 12 1.578 1 (1 + 0) 7.797
G30 41 5.782 2 (2 + 0) 16.235
G31 48 70.703 7 (6 + 1) 97.922
G32 49 34.890 17 (2 + 15) 40.343

Table 6.14: Results of the exploration algorithm instances.

Summarizing, we can conclude that the results of our computational experi-
ment are, in general, very good. More than 75% instances were optimally solved
at the root node. The cpu times (excepting for one instance) were smaller than
10 seconds. The remaining 29 instances were optimally solved in the enumera-
tion tree in times that, with the exception of three instances, were smaller than
100 seconds.

6.3. THE CPARP ALGORITHM FOR THE RPP 93

6.3 The CPARP algorithm for the RPP

Even though the object of this thesis is to study the CPARP, in the com-
putational experiments we have also used our CPARP formulation and exact
algorithm to solve the whole set of RPP instances. Two main reasons lead to
this decision. On the one hand, because in Subsection 3.1 we gave a polyno-
mial reduction for transforming Rural Postman Problem to CPARP instances.
On the other hand, because we also wanted to test the quality of our CPARP
algorithm by comparing it with other RPP algorithms in the literature.

Since the considered instances had originally been RPP instances, now the
set of required edges are those of the original instances which, as previously ex-
plained, always coincide with the sets of demand edges in the CPARP instances.
Also, the type of the problem has been changed, since by definition of the RPP,
now we are facing minimization problems. And, finally, the objective function
is slightly different, since it does not take into account profits at all. In general,
we will see that the good behavior of the algorithm for the CPARP maintains
its quality when solving RPP instances.

The polynomial reduction has been carried out exactly as explained in Sub-
section 3.1, so profits for demand edges in the CPARP instances have been
raised up to one million. Therefore, all required edges of the RPP instances are
traversed in the optimal solutions next presented.

In Tables 6.15 - 6.19 the results are given. All the tables have eight columns
for each instance with its RPP optimal value (z∗), the value of the optimal
solution to the relaxation of the formulation described in 3.4.4 (zr), the heuristic
value at the root node of the exploration tree (zh), the percent gap between the
optimal solution and the solution to the relaxed model, gr = 100(z∗ − zr)/zr,
the percent gap between the heuristic solution value and the optimal one, gh =
100(zh − z∗)/z∗, the number of nodes visited in the exploration tree (n), and
the cpu times, in seconds, required to solve the relaxed LP formulation (tzr

)
and to optimally solve the problem (tz∗).

In general, note that given an instance, if tz∗ = tzr
then it has been solved

at the root node of the exploration tree since its LP relaxation already gave
an optimal solution. Therefore, when in a row both times are the same, then
the number of visited nodes in the exploration tree is zero. However, among
the instances with tz∗ > tzr

, there are also some that did not require exploring
any additional node. In particular, those for which optimally of their heuristic
solution was proven at the root node.

As can be seen in Table 6.15, in both ALBAIDA instances the required time
to achieve an integer solution is small. Only for the instances of CPARP whose
optimal solution services all the clusters the number of nodes in the exploration
tree coincide. This is not the case of ALBAIDAA that was optimally solved at
the root node of the exploration tree in the case of the CPARP, and as a RPP

94 CHAPTER 6. COMPUTATIONAL RESULTS

name z∗ zr zh gr gh n tzr tz∗

ALBAIDAA 10599 10592.67 10599 0.1 0.0 5 20.140 24.969
ALBAIDAB 8629 8623.67 8629 0.1 0.0 1 9.625 11.781

Table 6.15: Solving the RPP on ALBAIDA instances with the CPARP algo-
rithm.

it requires to explore five nodes.

name z∗ zr zh gr gh n tzr
tz∗

P01 76 72.00 76 5.6 0.0 0 0.031 0.031
P02 152 142.50 153 6.7 0.7 5 0.047 0.188
P03 101 101.00 101 0.0 0.0 0 0.234 0.234
P04 84 82.00 84 2.4 0.0 4 0.047 0.141
P05 124 118.50 124 4.6 0.0 0 0.062 0.109
P06 102 102.00 102 0.0 0.0 0 0.110 0.110
P07 130 130.00 130 0.0 0.0 0 0.062 0.062
P08 122 117.00 122 4.3 0.0 0 0.047 0.047
P09 83 80.00 83 3.7 0.0 0 0.031 0.031
P10 80 78.00 80 2.6 0.0 1 0.032 0.063
P11 23 23.00 23 0.0 0.0 0 0.015 0.015
P12 19 19.00 19 0.0 0.0 0 0.000 0.000
P13 35 35.00 35 0.0 0.0 0 0.016 0.016
P14 202 192.50 205 4.9 1.5 30 0.219 2.984
P15 441 436.00 441 1.1 0.0 0 0.235 0.235
P16 203 188.00 203 8.0 0.0 9 0.281 1.140
P17 112 110.50 112 1.4 0.0 0 0.110 0.141
P18 146 144.00 146 1.4 0.0 0 0.141 0.141
P19 257 253.00 257 1.6 0.0 0 0.218 0.218
P20 398 386.33 400 3.0 0.5 124 1.360 80.641
P21 366 344.00 372 6.4 1.6 40 0.828 18.235
P22 621 614.00 622 1.1 0.2 3 0.891 1.860
P23 475 437.00 475 8.7 0.0 2 0.703 1.297
P24 405 399.00 405 1.5 0.0 12 0.453 2.422

Table 6.16: Solving the RPP on CHRISTOFIDES instances with the CPARP
algorithm.

The results corresponding to the CHRISTOFIDES instances are displayed
in Table 6.16. Observe that exactly 14 instances were solved at the root node of
the exploration tree, and for the rest of them, the values of the gaps are under
the 9%. In our opinion the largest percent gaps could be reduced if, instead of
using the heuristic separation for the cocircuit inequalities in the general case of
Subsection 4.2.2 we used the exact algorithm described in Algorithm 4.4. Also
noticeable are the required cpu times for optimally solving all the instances: all
but one under one second.

6.3. THE CPARP ALGORITHM FOR THE RPP 95

name z∗ zr zh gr gh n tzr tz∗

D0 272 272.00 272 0.0 0.0 0 0.016 3.891
D1 701 701.00 701 0.0 0.0 0 0.032 0.032
D2 702 702.00 702 0.0 0.0 0 0.032 0.032
D3 754 753.00 754 0.1 0.0 0 0.031 0.047
D4 920 860.00 920 7.0 0.0 3 0.031 0.094
D5 963 921.83 963 4.5 0.0 8 0.031 0.187
D6 909 908.00 909 0.1 0.0 0 0.063 0.063
D7 1026 937.50 1039 9.4 1.3 7 0.046 0.234
D8 1013 989.50 1013 2.4 0.0 3 0.062 0.172
D9 1032 1031.00 1032 0.1 0.0 0 0.172 0.172
D10 739 739.00 739 0.0 0.0 0 0.203 0.203
D11 1088 1088.00 1088 0.0 0.0 0 0.219 0.219
D12 1085 1083.00 1085 0.2 0.0 0 0.156 0.172
D13 1097 1097.00 1097 0.0 0.0 0 0.390 0.390
D14 1416 1416.00 1416 0.0 0.0 0 0.360 0.360
D15 1405 1402.00 1405 0.2 0.0 0 0.328 0.328
D16 1436 1418.00 1449 1.3 0.9 10 0.437 1.844
D17 1683 1683.00 1683 0.0 0.0 0 0.312 0.328
D18 1264 1261.00 1264 0.2 0.0 0 1.437 1.453
D19 1373 1373.00 1373 0.0 0.0 0 1.047 1.047
D20 1262 1261.00 1262 0.1 0.0 0 0.703 0.703
D21 1602 1599.00 1602 0.2 0.0 0 1.140 1.156
D22 1739 1720.00 1739 1.1 0.0 8 3.578 10.890
D23 1774 1769.00 1774 0.3 0.0 0 1.625 1.625
D24 2188 2185.00 2188 0.1 0.0 0 1.328 1.344
D25 1989 1983.00 2014 0.3 1.3 1 1.921 2.843
D26 2441 2436.00 2441 0.2 0.0 0 1.281 1.297
D27 1793 1790.82 1837 0.1 2.5 1 30.188 33.797
D28 1834 1833.00 1842 0.1 0.4 2 10.485 13.500
D29 1766 1734.94 1808 1.8 2.4 82 11.062 236.203
D30 2310 2298.38 2310 0.5 0.0 5 10.593 21.468
D31 2539 2531.17 2551 0.3 0.5 11 17.219 35.625
D32 2137 2133.00 2137 0.2 0.0 0 14.516 14.547
D33 2914 2872.67 2931 1.4 0.6 158 8.094 436.844
D34 2906 2902.00 2906 0.1 0.0 0 7.141 7.172
D35 2820 2815.00 2820 0.2 0.0 0 6.187 6.218

Table 6.17: Solving the RPP on DEGREE instances with the CPARP algorithm.

For the DEGREE instances, in Table 6.17, the results are also satisfactory,
since 23 out of 36 instances were optimally solved at the root node of the ex-
ploration tree, and the relaxation gap (in all but two instances) is better than
in the previous case (under 5%). Almost in all of them the time required was
less than 40 seconds. However, we have two pathological cases, D29 and D33,
whose times raised up to almost four and eight minutes respectively. Neverthe-
less, these two instances present more reasonable times for solving only the LP
relaxation, and as also can be seen in Table 6.17, their relaxation gaps, gr, are
very good (under 2%).

96 CHAPTER 6. COMPUTATIONAL RESULTS

The solution values for the RANDOM instances are shown in Table 6.18.

name z∗ zr zh gr gh n tzr tz∗

R0 29853 29853.00 29853 0.0 0.0 0 0.047 0.047
R1 34317 34317.00 34317 0.0 0.0 0 0.031 0.031
R2 24968 24968.00 24968 0.0 0.0 0 0.032 0.032
R3 34054 34054.00 34054 0.0 0.0 0 0.031 0.031
R4 26256 26256.00 26256 0.0 0.0 0 0.031 0.031
R5 35758 35758.00 35758 0.0 0.0 0 0.078 0.078
R6 39221 39221.00 39221 0.0 0.0 0 0.094 0.094
R7 35140 35140.00 35140 0.0 0.0 0 0.062 0.062
R8 48729 48729.00 48729 0.0 0.0 0 0.109 0.109
R9 42572 42572.00 42572 0.0 0.0 0 0.125 0.125
R10 38741 38741.00 38741 0.0 0.0 0 0.344 0.360
R11 42628 42628.00 42628 0.0 0.0 0 0.296 0.296
R12 50586 50586.00 50586 0.0 0.0 0 0.157 0.157
R13 54867 54867.00 54867 0.0 0.0 0 0.281 0.281
R14 65549 65549.00 65549 0.0 0.0 0 0.312 0.312
R15 63714 63714.00 63714 0.0 0.0 0 0.672 0.610
R16 50349 50349.00 50349 0.0 0.0 0 0.437 0.437
R17 43272 43272.00 43272 0.0 0.0 0 0.282 0.282
R18 56870 56870.00 56870 0.0 0.0 0 0.343 0.343
R19 45331 45331.00 45331 0.0 0.0 0 0.391 0.391

Table 6.18: Solving RPP on RANDOM instances with the CPARP algorithm.

Again, even though these instances have the largest variability in the dis-
tribution of the data parameters, the results are as good as in the case of the
CPARP. All the instances of this group were optimally solved at the root node,
what clearly illustrates the efficiency of the algorithm.

Finally, in Table 6.19 the results for the GRID instances are given. The
results are as good as in general for all other instances. There are 31 out of 36
optimally solved at the root node of the exploration tree. However, as can be
observed in Table 6.19, Instance G32 took almost 7 hours to be solved. Besides
this drawback, for all instances but G28 the relaxation gap is below 5%, which
as mentioned above, is a good indicator for the algorithm.

In general terms, the above results indicate that in most cases our algorithm
is able to optimally solve the instances in small times. However, it is also true
that our results are not comparable with those obtained with the best specific
algorithms for the RPP [11, 18, 22].

6.3. THE CPARP ALGORITHM FOR THE RPP 97

name z∗ zr zh gr gh n tzr tz∗

G0 12 12.00 12 0.0 0.0 0 0.015 0.031
G1 14 14.00 14 0.0 0.0 0 0.031 0.031
G2 12 12.00 12 0.0 0.0 0 0.016 0.016
G3 16 16.00 16 0.0 0.0 0 0.047 0.047
G4 16 16.00 16 0.0 0.0 0 0.265 0.281
G5 14 14.00 14 0.0 0.0 0 0.031 0.031
G6 20 20.00 20 0.0 0.0 0 0.063 0.094
G7 16 16.00 16 0.0 0.0 0 0.031 0.031
G8 18 18.00 18 0.0 0.0 0 0.047 0.047
G9 24 24.00 24 0.0 0.0 0 0.219 0.219
G10 30 29.33 30 2.3 0.0 0 0.406 0.469
G11 30 30.00 30 0.0 0.0 0 0.312 0.375
G12 42 42.00 42 0.0 0.0 0 0.297 0.297
G13 40 40.00 40 0.0 0.0 0 0.218 0.218
G14 42 40.67 42 3.3 0.0 2 0.344 0.688
G15 48 48.00 48 0.0 0.0 0 0.234 0.234
G16 46 46.00 46 0.0 0.0 0 0.375 0.391
G17 48 48.00 48 0.0 0.0 0 0.297 0.297
G18 48 48.00 48 0.0 0.0 0 0.703 0.718
G19 52 52.00 52 0.0 0.0 0 2.406 2.563
G20 54 54.00 54 0.0 0.0 0 1.719 1.938
G21 70 69.33 70 1.0 0.0 0 1.594 1.781
G22 68 68.00 68 0.0 0.0 0 1.266 1.281
G23 74 74.00 74 0.0 0.0 0 1.906 1.906
G24 90 90.00 90 0.0 0.0 0 2.094 2.094
G25 84 84.00 84 0.0 0.0 0 1.516 1.532
G26 84 84.00 84 0.0 0.0 0 1.547 1.563
G27 78 78.00 80 0.0 2.6 2 4.297 10.891
G28 86 86.00 92 0.0 7.0 53 13.594 253.797
G29 82 81.33 84 0.8 2.4 50 8.984 166.422
G30 110 109.50 110 0.5 0.0 0 20.703 21.265
G31 114 114.00 114 0.0 0.0 0 11.563 11.610
G32 120 118.50 120 1.3 0.0 4388 5.906 27558.422
G33 148 148.00 148 0.0 0.0 0 4.750 4.782
G34 144 143.33 144 0.5 0.0 0 10.750 11.813
G35 142 142.00 142 0.0 0.0 0 12.406 13.140

Table 6.19: Solving the RPP on GRID instances with the CPARP algorithm.

Chapter 7

The Windy CPARP

In this chapter we study the Windy Clustered Prize-collecting Arc Routing
Problem (WCPARP), which is the windy version of the CPARP.

Like all other arc routing problems, the difference between the version on
an undirected graph and the version on a windy graph is that in the former,
the cost of traversing an edge does not depend on the direction of the traversal,
whereas in the latter, the cost of traversing an edge may be different in each of
its two opposite directions. Similarly to other windy arc routing problems, in
the WCPARP it is possible that an optimal solution traverses an edge in the
same direction several times. Therefore, a natural formulation would use gen-
eral integer variables allowing this possibility. However, given the good results
obtained with the binary formulation for the CPARP, we will also formulate the
WCPARP using only binary variables.

In this chapter we first give the definition of the WCPARP. An example is
given next. Then, we present a formulation with general integer variables cor-
responding to the times that each edge is traversed by solution tours in each of
its two directions. This formulation is presented here since it seems to be the
natural formulation for the problem. However, after that, another formulation
for the WCPARP, using only binary variables, is proposed. For defining vari-
ables as binary, an upper bound on the number of times that any edge can be
used is established. Thus, we can propose a formulation of the problem with
binary variables by introducing as many copies of each edge as needed. As with
the CPARP, for this formulation we define an equivalent problem on a complete
graph, and study some properties from this new point of view. The chapter
finishes with the results of a preliminary computational experience using an al-
gorithm that implements the latter formulation, leaving the former for future
research.

99

100 CHAPTER 7. THE WINDY CPARP

7.1 Definition of the WCPARP

Before proceeding, recall that G = (V,E) denotes a given graph with a distin-
guished vertex d ∈ V that represents the depot, and a subset D ⊂ E, D 6= ∅,
representing the set of demand edges. Now, there are two costs denoted cuv and
cvu, representing the cost of traversing edge e = uv ∈ E from u to v and from
v to u, respectively. As before, associated with each demand edge e ∈ D there
is also a value be > 0 that represents the profit for servicing edge e. Thus, we
assume that the profit of each demand edge does not depend on the direction
in which it is serviced, and also like before, edges without demand, e ∈ E \D,
are assumed to have profit zero. Again, GD ≡ (V (D) ∪ {d}, D) denotes the
subgraph induced by the edge set D and the depot, and Ck, k ∈ {0, . . . , p}, are
the connected components of the graph GD.

In the WCPARP, the cost of a tour T accounts for all the edges that are
traversed, taking into account the number of times that each edge is used in
each possible direction. That is,

c(T) =
∑
uv∈T

(tuvcuv + tvucvu)

where tuv and tvu denote the number of times that T traverses edge e = uv
from u to v and from v to u, respectively.

Definition 7.1 The Windy Clustered Prize-collecting Arc Routing Problem
(WCPARP)

Feasible solutions for the WCPARP are tours going through d, such that for
each cluster Ck, k ∈ {0, . . . , p}, either all its edges are serviced or none of its
edges is serviced.

The Windy Clustered Prize-collecting Arc Routing Problem is to find a set of
clusters K∗ ⊆ {0, . . . , p}, and a tour T ∗, passing through d, that services all the
edges in ∪k∈K∗Ck, but none of the edges in D \ ∪k∈K∗Ck, which maximizes the
value of ∑

k∈K
Fk −

∑
uv∈T

(tuvcuv + tvucvu)

over all feasible tours T , where K is the set of clusters serviced in the tour T ,
tuv is the number of times that edge e = uv is traversed from u to v in T , and
Fk = b(Ck).

We represent a WCPARP by WCPARP (G,D, d, b, c).

Remark that the WCPARP is NP-hard, since there exists an easy polyno-
mial reduction from the CPARP.

7.1. DEFINITION OF THE WCPARP 101

Example

In Figure 7.1(a), an instance of WCPARP is depicted. The value on edge uv next
to vertex u corresponds to cuv, whereas the value next to vertex v corresponds to
cvu. As usual, demand edges appear in bold. As can be seen, there are three clus-
ters with sets of vertices V0 = {d}, V1 = {1, 2, 6, 7}, and V2 = {3, 4, 5, 8, 9, 10}.
Also, C1 = {{1, 2}, {1, 6}, {2, 7}} and, C2 = {{3, 4}, {4, 5}, {5, 10}, {8, 9}, {9, 10}}.
Edges {3, 8} and {4, 9} have its two end-nodes in V2, but they do not have de-
mand. All demand edges have profit be = 10.

d 1 2

3 4

5 6 7

8910

(a)

(b)

1 1

10

1

1 1

10

1

10

1

1 10 10 1

10

1

1

1

1 1

101110

d 1 2

6 7

3 4 5

1098

d 1 2

6 7

3 4 5

1098

Figure 7.1: (a) Example instance. Both costs are shown for all edges (the nearest to
a node is its outgoing cost). Demand edges are in bold, with be = 10 for all of them;
(b) Optimal directed solution giving service to C2, with value z∗WCPARP = 36. Only
serviced edges in bold.

In Figure 7.1(b) the unique optimal solution is shown. Now solutions are
directed graphs. The only cluster serviced by the solution is C2. Only serviced
edges are in bold. Observe that edges {1,6} and {2,7} are two demand edges not
even traversed. Another demand edge, {1,2}, is traversed but not serviced. Also,
attention must be paid to the fact that the solution is using twice edge {4,9} in
its forward direction. The value of the solution is z∗WCPARP = 50− 14 = 36.

102 CHAPTER 7. THE WINDY CPARP

7.2 Formulation of the WCPARP with integer
variables

Throughout this section we will work on a simplified graph G′ = (V (D), E′)
obtained from G = (V,E) similarly as for the Windy Rural Postman Problem
in [30, 49]. The set E′ contains the edges in D plus some other representing
minimum cost paths in the original graph. In particular, E′ is obtained by first
adding to D an edge uv for each pair of vertices u, v ∈ V (D) with cost values,
cuv and cvu, equal to the costs of the minimum cost paths in G from u to v,
and from v to u, respectively.

Then, for each edge e = uv ∈ E′ we define two variables xuv and xvu
representing the number of times edge e is traversed from u to v and from v to
u, respectively. In this manner, for a vertex u ∈ V (D) we can denote x(δ+(u))
and x(δ−(u)) to the sums of its outgoing and incoming traversals, respectively.
This is, x(δ+(u)) =

∑
xuv, and x(δ−(u)) =

∑
xvu. We also define p + 1

additional binary variables zk, k ∈ {0, . . . , p}, that take value one if component
Ck is serviced in the solution tour, and zero otherwise.

The problem can be formulated as follows:

(W1) max
p∑
k=0

Fkzk −
∑
e∈E′

(cuvxuv + cvuxvu) (7.1)

xuv + xvu ≥ zk, k = {0, · · · , p}, uv ∈ Ck (7.2)
x(δ+(u)) = x(δ−(u)), u ∈ V (D) (7.3)

x(δ(S)) ≥ 2zk, S ⊂ ∪k∈πVk, π ∈ P(Ωp) (7.4)
xuv, xvu ≥ 0 and integer, uv ∈ E′ (7.5)

zk ∈ {0, 1}, k ∈ {0, · · · , p} (7.6)

where Ωp = {1, . . . , p}.

Inequalities (7.2) guarantee that the route traverses all the demand edges of
the components that it serves; Equations (7.3) force the route to be symmetric,
by guaranteing that for each vertex u ∈ V (D) the number of edges of the route
incoming vertex u is the same as the number of edges of the route outgoing
vertex u. Inequalities (7.4) ensure that the route connects the edges it serves
and the depot. Observe that, because of constraints (7.3), each constraint (7.4)
is equivalent to the pair of inequalities x(δ+(S)) ≥ zk, x(δ−(S)) ≥ zk. Finally,
the domain for all variables is established in the expressions (7.5) and (7.6).

The formulation of WCPARP with integer variables will be studied in future
research.

7.3. FORMULATION OF THE WCPARP WITH BINARY VARIABLES 103

7.3 Formulation of the WCPARP with binary
variables

Looking forward to making use of the cocircuit inequalities shown in Subsec-
tion 3.4.2, we have adressed the study of the formulation with binary variables.

Analogously to the case of the CPARP, we are going to work on the complete
graph Kn defined on the set of nodes V (D) ∪ {d}. We propose a formulation
on the WCPARP (Kn, D, d, b, c) that is equivalent to the problem on the orig-
inal graph, WCPARP (G,D, d, b, c), in the sense that optimal solution values
coincide. In the first subsection the transformation is detailed. Next, several
dominance relations are proved, and the sets of variables are defined based on
these properties. An ILP formulation for the WCPARP with binary variables
is then presented, whose LP relaxation has been tested in the computational
experiments of the WCPARP, obtaining hereby an upper bound for the integer
optimal value of each problem. These results are seen in the next section.

7.3.1 Graph transformation: WCPARP on Kn

Let us consider the complete graphKn, with vertex set V (D)∪{d}, and therefore
n = |V (D) ∪ {d}|. To simplify the study, abusing slightly notation, from now
on we will denote V := V (D) ∪ {d}.

For each pair u, v ∈ V , let PGuv and PGvu respectively denote the minimum
cost paths in G from u to v and from v to u. Then, c(PGuv) and c(PGvu) de-
note their values relative to the cost function. The definition of the profit and
cost functions on Kn follows a rationale quite similar to that used in the trans-
formation of the CPARP of Subsection 3.2.1, except that now we define the
transformation for both costs.

Dealing with edges that do not fulfill the triangular inequality with respect
to the cost function, now the situation is slightly more complicated than in the
CPARP seen in Subsection 3.2.1, since an edge uv ∈ E might fulfil the triangular
inequality in just one direction. In general, the values ∆uv = cuv − c(PGuv) and
∆vu = cvu − c(PGvu) need not coincide in the original graph. When e = uv ∈ D
has ∆uv > 0, then, in any optimal solution edge e will be traversed in the
direction from u to v (at most) only when it is serviced, with a net profit
be − cuv = (be − ∆uv) − (cuv − ∆uv). All other times that an optimal tour
goes from u to v in the original graph, the path PGuv will be used with cost
c(PGuv) = cuv − ∆uv. Taking this observation into account, the cost functions
for an edge e = uv ∈ E(Kn) in the problem stated on Kn are defined as

• cuv := c(PGuv), when e = uv is traversed from u to v, and

104 CHAPTER 7. THE WINDY CPARP

• cvu := c(PGvu), when e = uv is traversed from v to u.

Moreover, when e ∈ D, the profit is

• buv := buv −∆uv, when e = uv is serviced in the direction from u to v, or

• bvu := bvu −∆vu, when e = uv is serviced in the direction from v to u.

Like in Chapter 3, let H denote the set of non demand edges in Kn, and again,
we partition the set H of non demand edges into H1 ∪ H2, where H1 denotes
the set of non-demand edges with the two end-nodes in the same cluster, and
H2 denotes the set of edges with the two end-nodes in different clusters.

From the above definitions it is easy to see that any feasible solution TKn

to the transformed problem WCPARP (Kn, D, d, b, c) defines a feasible solu-
tion TG to the original problemWCPARP (G,D, d, b, c), which can be obtained
by substituting any edge e ∈ H of TKn , by the edges of the path PGe . The
values of TKn and TG coincide. Moreover, any feasible solution, TG, to the
original WCPARP (G,D, d, b, c) is also a feasible solution to the transformed
WCPARP (Kn, D, d, b, c), although their values do not necessarily coincide.
Anyway, for the case of optimal solutions, if T ∗G is an optimal solution to the
WCPARP (G,D, d, b, c), any chain of traversed-but-not-serviced edges defines
a shortest path between its end-nodes, PGe , so that the value of T ∗G coincides
with the optimal value of the solution on the complete graph, T ∗Kn

.

As a consequence, any optimal solution to the WCPARP (Kn, D, d, b, c)
defines an optimal solution to WCPARP (G,D, d, b, c).

d 3 4 5

1098

Figure 7.2: Optimal solution for the instance of Figure 7.1(a) when the problem is
stated on the complete graph.

An optimal solution to the example of Figure 7.1(a) after the transformation
of the problem to the problem stated on the complete graph is depicted in
Figure 7.2. As it can be seen, in this example any optimal solution traverses
two times edge {4, 9} in the same direction. Indeed, this represents a difficulty
for formulating the problem using only binary variables. We next study some

7.3. FORMULATION OF THE WCPARP WITH BINARY VARIABLES 105

properties ofWCPARP (Kn, D, d, b, c) in terms of dominance relations that are
useful towards this goal.

7.3.2 Properties of the WCPARP

Some dominance relation are listed below. They will we be used for the formu-
lation of the WCPARP with binary variables.

We say that an ordered pair of edges, e − f such that e, f ∈ δ(u), u ∈ V
are consecutive in a feasible solution TKn

if both edges are used in TKn
, e in

the direction incoming node u, and f in the direction outgoing node u. Also,
throughout, it must be clearly distinguished between servicing an edge, and
traversing it. Thus, we are going to use the term traverse for making reference
to use an edge without giving service to it.

Dominance 7.1 There exists an optimal solution T ∗ toWCPARP (Kn, D, d, b, c)
that does not traverse any pair of consecutive edges.

Proof Suppose there exists a pair of consecutive edges e − f , e = uv, and
f = uw, u, v, w ∈ V , that are traversed in T ∗. Then, the traversal of the
consecutive pair e − f can be substituted by one traversal of edge vw in the
direction outgoing node v, without deteriorating the objective function value. 2

From Dominance 7.1, an optimal solution to WCPARP (Kn, d,D, b, c) ex-
ists, in which every time that edge e = uv is used in the direction from u to v
either e is serviced, or e is traversed as a means of connecting two edges that
are serviced, one in the direction incoming node u and the other one in the
direction outgoing node v. Thus, similarly to Dominance 3.6 of Chapter 3 for
the CPARP, we also have the following dominance relation.

Dominance 7.2 There exists an optimal solution to WCPARP (Kn, D, d, b, c)
that does not traverse any edge of any non serviced component.

Note that as a consequence of dominance relations 7.1 and 7.2, there exists
an optimal solution toWCPARP (Kn, D, d, b, c) in which no edge in the cut-set
of a non serviced component is traversed, as already was said in Dominance 3.6
for the CPARP.

Next dominance relation is later used for upper bounding the number of
binary variables associated with each edge. Indeed, we refer to the number of
uses of each edge by optimal solution tours.

106 CHAPTER 7. THE WINDY CPARP

Dominance 7.3 There exists an optimal solution to WCPARP (Kn, d,D, b, c)
in which for any edge e = uv the maximum number of times that e is used in
each of its two possible directions is given by Ue = min{|δD(u)| , |δD(v)|}.

Proof Let T ∗ be an optimal solution to WCPARP (Kn, D, d, b, c) in which
e = uv is used more than Ue times in the direction from u to v. Let also
tuv > Ue denote the number of times that e is traversed in T ∗ in the direction
from u to v. Without loss of generality also assume that Ue = |δD(u)|. Since
tuv > |δD(u)|, there must exist f = uw, f /∈ D, which is traversed in T ∗ in the
direction from node w to node u. Thus, one traversal of the consecutive pair
of edges f − e can be substituted by one traversal of edge wv in the direction
incoming node v, without deteriorating the objective function value. 2

When needed, we will use Uuv ≡ Ue.

As opposed to the CPARP, in the WCPARP there might exist non demand
edges in H1 with some D-even end-node that must be traversed in any optimal
solution. This is illustrated by edge {4, 9} in the solution of Figure 7.1(b) of
page 101, or also in Figure 7.2.

We now turn our attention to the edges that are used in both directions in
optimal solutions to the WCPARP (Kn, D, d, b, c). For this kind of edges we
will find some similarities with the CPARP. In Dominance 7.4, edges that can be
used in both directions in optimal solutions are identified. As can be observed,
the sets of such edges are defined analogously as those used for the CPARP in
Preprocessing 3.9.

For Preprocessing 7.4, recall the sets of edges defined in Subsection 3.2.2. In
particular, Do was defined as the set of edges with both end-nodes D-odd, and
alsoM0 as the set of edges inH2 (so connecting different clusters) with both end-
nodes D-even, such that their costs are minimum among all edges connecting
the same pair of clusters through D-even vertices. Now these minimum costs
must be understood as the sum of both costs for each edge.

Preprocessing 7.4 There is an optimal solution to WCPARP (Kn, d,D, b, c)
where the only edges that are used in both directions are either e ∈ D ∩Do or
e ∈M0.

Proof Let T ∗ be an optimal solution in which edge e = uv is used in both
directions.

1. Let e ∈ D. Suppose vertex u is D-even and suppose, without loss of
generality, that edge e is serviced in the direction from u to v. Edge e is
traversed therefore in the direction from v to u. Hence, there exists f = uw
which is traversed in T ∗ in the direction outgoing node u. Therefore, one
traversal of the consecutive pair of edges e − f can be substituted by one

7.3. FORMULATION OF THE WCPARP WITH BINARY VARIABLES 107

traversal of edge vw in the direction outgoing node v, without deteriorating
the objective function value.

2. Let e ∈ H2. Suppose vertex u is D-odd. Since edge e is traversed in the
direction from v to u there exists f = uw which is traversed in T ∗ in
the direction outgoing node u. Therefore, one traversal of the consecutive
pair of edges e − f can be substituted by one traversal of edge {v, w} in
the direction outgoing node v, without deteriorating the objective function
value. As a consequence, for e ∈ H2 only those with both vertices D-even
are candidates to be used twice in optimal solutions. Consequently, they
will belong to the set M0.

Observe finally that we can assume that no edge e ∈ H1 is traversed in both
directions in T ∗, since the removal of one traversal in each direction will produce
a feasible solution with a value strictly better than that of T ∗.

2

Next, we further analyze the edges that can be used in both directions
and did not satisfy the triangular inequality in the original graph G. Recall
from Subsection 7.3.1 that in the transformed complete graph not only the cost
function is asymmetric, but also the profit function. Therefore, for demand
edges, e = uv ∈ D, that do not satisfy the triangular inequality in the origi-
nal graph G, the contribution to the objective function is not the same when
service takes place in the direction from u to v, with a total contribution of
(buv − cuv)− cvu = buv − (cuv + cvu), than when service takes place from v to u,
with a total contribution of (bvu−cvu)−cuv = bvu−(cuv+cvu). That is, we can
assume that in any optimal solution that uses edge e = uv in both directions, ser-
vice of edge e takes place in the direction corresponding to max{buv, bvu} (with
ties broken arbitrarily). Also recalling from Subsection 7.3.1 the definition of
∆uv = cuv − c(PGuv), the best direction is the one that gives min{∆uv,∆vu}. In
other words, service will be given in the direction which, in terms of the original
graph G, produces a smaller saving for using the shortest path instead of the
original link. For denoting such direction, associated with each edge e = uv, let
the ordered pair (ue, ve) be defined as follows

(ue, ve) =
{

(u, v) if ∆uv ≥ ∆vu,
(v, u) otherwise,

For unifying purposes we arbitrarily define the direction of the first traversal
of a non-demand edge e = uv ∈ H as (ue, ve) = (u, v).

The definitions stated above allow us to establish next dominance relation.

Dominance 7.5 There exists an optimal solution toWCPARP (Kn, D, d, b, c),
in which any edge e = uv that is used in both directions is serviced in the
direction from ue to ve.

108 CHAPTER 7. THE WINDY CPARP

It is clear that when an edge is used in both directions, it will be used
exactly once in, at least, one direction. Otherwise the removal of one traversal
of each direction would produce a feasible solution with an improved value. If,
moreover, we deal with a non-demand edge, then it will be traversed exactly
once in both directions by the same reason.

From the reasons explained above, it results that a demand edge might not
be serviced the first time it is traversed. This might be the most significant
difference between the WCPARP and its predecessor, the CPARP.

7.3.3 Definition of variables

Even though for the case of the WCPARP they do not appear in the objective
function, p+ 1 variables zk are defined as in the case of the CPARP, indicating
whether or not the optimal solution gives service to cluster k, k ∈ {0, . . . , p}.

Also, for each edge e = uv ∈ E(Kn), we define two sets of x variables,
xtuv, and xtvu, t = 1, . . . , Uuv, where, as defined in Dominance 7.3, Ue = Uuv =
min{|δD(u)| , |δD(v)|}.

They are defined as follows:

x1
uv =

1 if edge uv ∈ D is serviced the first time it is used in the direction

from u to v,
1 if the first time that edge uv ∈ H is traversed, it is so from u to v,
0 otherwise.

Taking into account that non-demand edges have profit zero, the coefficient
in the objective function of these variables is buv − cuv.

For 1 < t ≤ Ue,

xtuv =
{

1 if edge uv is traversed a t-th time from u to v,
0 otherwise.

The coefficient in the objective function of these variables is −cuv.

For simplicity of notation, in what follows, for any subset S ⊂ V , S 6= ∅ we
will use

7.3. FORMULATION OF THE WCPARP WITH BINARY VARIABLES 109

x(δ+(S)) =
∑

uv∈δ(S)

Uuv∑
t=1

xtuv (7.7)

x(δ−(S)) =
∑

uv∈δ(S)

Uuv∑
t=1

xtvu

x(δ(S)) = x(δ+(S)) + x(δ−(S))

As we have previously observed, some demand edges are not serviced the first
time they are used in a given direction. These are the edges that are used in
both directions and that are serviced in the opposite direction. Recall that the
edges that can be used in both directions have been determined in Dominance
7.4 to belong to the sets D ∩ Do and M0 for demand and non demand edges,
respectively.

Recall also that Dominance 7.5 indicates that for such edges the service
direction (fictitious in the case of non-demand edges) is (ue, ve). Thus, we
define one additional variable yveue

for each edge

yveue
=

 1 if edge e ∈ (D ∩Do) ∪M0 is used in both directions and
the first use has been from ve to ue,

0 otherwise.

For the y variables an analogous notation for the expressions (7.7) is used,
even though all of them involve just one yuv for each edge. This is,

y(δ+(S)) =
∑

uv∈δ(S)

yuv

y(δ−(S)) =
∑

uv∈δ(S)

yvu

y(δ(S)) = y(δ+(S)) + y(δ−(S))

7.3.4 Objective Function

As opposed to the CPARP, in the WCPARP defined on a complete graph we do
not know beforehand the gross benefit of servicing a given cluster. This leads
not to include in the objective function the variables associated with the service

110 CHAPTER 7. THE WINDY CPARP

of clusters. For this reason, the objective function is

max Z =
∑
uv∈E

(buv − cuv)x1
uv −

∑
uv∈E

cuvyuv −
∑
uv∈E

Ue∑
t=2

cuvx
t
uv (7.8)

where after the transformation we denote E to the set of edges of Kn, that is
E := E(Kn).

7.3.5 ILP01 Formulation

The collection of constraints of the polyhedral model for the WCPARP is split
into five classes which are enumerated next with a brief semantic annotation for
each one of them.

• Mandatory: Characterizing the problem as clustered. Inequalities (7.9)
impose the clustering restriction on the demand edges. Inequalities (7.10)
are implied by Dominances 7.1 and 7.2. They forbid using a vertex of a
non serviced cluster.

x1
uv + x1

vu = zk, uv ∈ Ck, k ∈ {0, . . . , p} (7.9)
x1(δD(u)) + y(δD(u)) ≥ x1(δ(u) \ δD(u)) + y(δ(u) \ δD(u)), u ∈ V (7.10)

• Domain: Establishing dominance relations among variables. Depending
on the type of variable, Inequalities (7.11), forbid the first use of an edge
in both directions. Inequalities (7.12), for variables yve,ue

seen in Domi-
nance 7.5, mean that a first use is required for going back through a given
edge. Inequalities (7.13) are related to the t-th traversal, with t > 1, and
they impose that edges must have been traversed t− 1 times before their
t-th traversal.

x1
uv + x1

vu ≤ 1, uv ∈ E (7.11)
x1
uv − yvu ≥ 0, uv ∈ Ey (7.12)

xtuv ≤ xt−1
uv , t = {2, . . . , Uuv}, uv ∈ E (7.13)

where Ey = (D ∩Do) ∪M0.

• Symmetry: Ensuring the parity of the vertices. Equations (7.14) are com-
monly used in most of windy problems, they impose that the number of
times the solution tour gets into a vertex is that one of times it gets out
of it.

x(δ+(u)) + y(δ+(u)) = x(δ−(u)) + y(δ−(u)), u ∈ V (7.14)

• Connectivity: Inequalities (3.8) for the CPARP are repeated in (7.15).

x(δ(∪
k∈π

Vk)) + y(δ(∪
k∈π

Vk)) ≥ 2zk, k ∈ π, π ∈ P(Ωp) (7.15)

7.3. FORMULATION OF THE WCPARP WITH BINARY VARIABLES 111

where Ωp = {1, . . . , p}. Working on the WCPARP we realized that they
can be strengthened by imposing that for each k ∈ π, π ∈ P(Ωp)

x(δ(∪
k∈π

Vk)) ≥ zk (7.16)

x(δ(∪
k∈π

Vk)) + y(δ(∪
k∈π

Vk)) ≥ 2zk

In fact, this would mean an improvement to the formulation of the CPARP
of Subsection 3.4.4. Thus, for the case of the WCPARP we introduced
the connectivity constraints in the form of Inequalities (7.16).

• Cocircuit: Reinforcing the symmetry constraints for sets of vertices.

x(δ(S) \ F) + y(F \ L) ≥ x(F) + y(L)− (|F |+ |L|) + 1 (7.17)

S ⊂ V (D) ∪ {d}, F ⊆ δ(S), L ⊆ F ∩ Ey, (|F |+ |L|) odd,

where Ey = (D ∩Do) ∪M0 as for the case of the CPARP, in the Expres-
sion 3.3.

Summarizing all the expressions seen above, a binary formulation for the
WCPARP is next proposed.

(W2)

max Z =
∑
uv∈E

(buv − cuv)x1
uv −

∑
uv∈E

cuvyuv −
∑
uv∈E

Ue∑
t=2

cuvx
t
uv (7.18)

x1
uv + x1

vu = zk, uv ∈ Ck, k ∈ {0, . . . , p} (7.19)
x1(δD(u)) + y(δD(u)) ≥ x1(δ(u) \ δD(u)) + y(δ(u) \ δD(u)), u ∈ V (7.20)

x1
uv + x1

vu ≤ 1, uv ∈ E (7.21)
x1
uv − yvu ≥ 0, uv ∈ E (7.22)

xtuv ≤ xt−1
uv , t = {2, . . . , Uuv}, uv ∈ E (7.23)

x(δ+(u)) + y(δ+(u)) = x(δ−(u)) + y(δ−(u)), u ∈ V (7.24)

x(δ(∪
k∈π

Vk)) ≥ zk, k ∈ π, π ∈ P(Ωp) (7.25)

x(δ(∪
k∈π

Vk)) + y(δ(∪
k∈π

Vk)) ≥ 2zk, k ∈ π, π ∈ P(Ωp)

x(δ(S) \ F) + y(F \ L) ≥ x(F) + y(L)− (|F |+ |L|) + 1, (7.26)
S ⊂ V (D) ∪ {d}, F ⊆ δ(S), L ⊆ F ∩ Ey, (|F |+ |L|) odd

zk ∈ {0, 1}, k ∈ {0, . . . , p} (7.27)
xte ∈ {0, 1}, t ∈ {1, . . . , Ue}, e ∈ E (7.28)

ye > 0, e ∈ Ey (7.29)

where Ωp = {1, . . . , p}.

112 CHAPTER 7. THE WINDY CPARP

Note that Proposition 3.11 of page 43 for the CPARP is also valid for the
WCPARP. Thus, Inequalities (7.29) are due to the result of that proposition.

7.3.6 Algorithm

In this section we propose an iterative algorithm to obtain upper bounds for the
optimal solutions to the formulation W2 seen in the previous section. We focus
on the linear problem relaxation of that formulation.

For solving the LP relaxation to the formulationW2, we start by omitting the
constraints related to the integrity of the variables, which are Inequalities (7.27)
and (7.28). Instead, we impose an upper bound of 1 on the corresponding
continuous variables.

Like in the CPARP there are several families of inequalities which have an
exponential size on several parameters. Therefore, exactly as for the case of the
CPARP, we face the problem using an iterative methodology. Next, we first
explain which are the constraints introduced in the initial model, and after, the
differences in the separation procedures with respect to the CPARP.

Initial Formulation

For the computational experiments, we have built an initial model in which we
have introduced a small part of the constraints of Subsection 7.3.5. These consist
of the three first sets (Mandatory, Domain and Symmetry constraints). With
respect to the connectivity inequalities, as in the CPARP, all Inequalities (7.25)
such that |π| = 1 have been included in the initial problem. In this way, we are
keeping in O(n) the number of constraints introduced at the first stage. Finally,
with respect to the cocircuit inequalities, we proceeded exactly as for the case
of the CPARP. This is, we have omitted them in the initial formulation. Given
that we have already the symmetry constraints for the vertices, we reinforced the
parity restrictions by including a new inequality for each D-odd vertex, meaning
that some non-demand traversal must be added to the cut of those vertices if its
corresponding cluster is serviced. Therefore, the semantic interpretation of the
constraint is exactly the same than in the CPARP. However, we have to express
this restriction using the new notation for the sets.

x(δ(u)) + y(δ(u))− x(δD(u)) ≥ zk, u ∈ Vk, k ∈ {0, . . . , p}, |δD(u)| odd (7.30)

7.4. COMPUTATIONAL RESULTS 113

Separation of Inequalities

To separate connectivity constraints for the WCPARP we have adapted the
same procedures of the CPARP, taking into account the variables associated
with the t-th traversals of the edges. The values corresponding to these variables
have simply been added when assigning the capacities of the maxflow problem
instance.

For the cocircuit inequalities, in the WCPARP some detail must be consid-
ered that makes the procedure slightly complicated. With respect to the sets F
and L (and especially to their cardinality, |F | and |L|), each traversal t of each
edge has been counted as an element of these sets. This is, given an edge and t
traversals of it, xtuv + xtvu must be considered as an element of the sets F or L
when counting their cardinalities.

7.4 Computational Results

Two sets of preliminary results are presented in this section. First, we tested the
algorithm on a workbench of instances obtained from the CPARP ones used in
Chapter 6 by assigning random costs for both directions to the edges. For these
instances we only can know about their optimality for those cases in which the
solution to the LP relaxation is integer. Given that no heuristic is available, we
can not know about the gaps that would illustrate the quality of the non-optimal
solutions.

After that, given that an obvious polynomial reduction from the CPARP to
the WCPARP consists of duplicating the costs, we have proceed by solving the
CPARP instances using the WCPARP algorithm. Even though clearly this is
not the purpose of the WCPARP algorithm, solving the CPARP instances with
it has been useful to acquire knowledge of the quality of the LP non-optimal
solutions.

7.4.1 Solving the WCPARP

Exactly as for the CPARP, for the WCPARP we must construct somehow a
workbench for testing the implemented algorithm. Denoting cuv and cvu the
costs of the new WCPARP instances, and ce the costs of the old CPARP in-
stances, we followed the guideline

cuv, cvu ∼ U [ce/2, 3ce/2].

Then, the nearest integers to these values have been used. Thus, we work
with integer values for costs and profits. The obtained results are given in Ta-

114 CHAPTER 7. THE WINDY CPARP

bles 7.1-7.5. The column headings coincide with those explained in Table 6.7 of
Subsection 6.2.1 (with Zw instead of Zr). In Table 7.1, the values for the two
ALBAIDA instances are presented.

name Zw tZw Z0 iter con(≤) coc (≤)
ALBAIDAA 5580.50 28.359 5949.50 10 4 (28) 6 (14)
ALBAIDAB 3971.00 25.016 4253.50 10 7 (47) 3 (9)

Table 7.1: LP solutions of the windy ALBAIDA instances.

Even though there are not optimal solutions obtained with these instances,
the solution value to the first iteration, Z0, is quite close to its final value
Zw. However, as can already be seen with these instances, the required times
significantly grow, with respect to the CPARP, when introducing new variables.

In Table 7.2 the values for the CHRISTOFIDES instances are listed.

name Zw tZw
Z0 iter con(≤) coc (≤)

P01 3.00 0.016 3.00 0 0 (0) 0 (0) X
P02 23.00 0.078 42.00 3 2 (5) 1 (2)
P03 73.50 0.593 76.00 4 0 (0) 4 (8)
P04 46.50 0.203 49.00 3 1 (2) 2 (6)
P05 22.00 0.125 24.00 2 1 (3) 1 (2) X
P06 60.00 0.188 60.50 1 0 (0) 1 (3)
P07 84.00 0.156 86.00 1 1 (2) 0 (0) X
P08 88.00 0.094 88.50 1 0 (0) 1 (3)
P09 48.00 0.063 50.25 2 1 (2) 1 (1)
P10 39.50 0.047 47.50 2 1 (2) 1 (2)
P11 14.00 0.015 14.00 0 0 (0) 0 (0) X
P12 13.00 0.016 14.00 2 1 (2) 1 (2) X
P13 4.00 0.000 4.00 0 0 (0) 0 (0) X
P14 111.00 0.656 118.50 4 1 (2) 3 (7)
P15 10.00 0.109 10.00 0 0 (0) 0 (0) X
P16 100.50 0.687 103.25 2 1 (2) 1 (4)
P17 34.00 0.297 36.33 7 4 (11) 3 (3)
P18 7.00 0.360 29.00 5 5 (15) 0 (0)
P19 52.00 0.907 59.00 3 2 (7) 1 (1) X
P20 231.00 7.078 241.00 6 3 (12) 3 (8)
P21 249.83 7.813 261.50 8 5 (16) 3 (11)
P22 400.75 5.782 412.00 6 3 (10) 3 (13)
P23 326.50 8.344 336.00 7 5 (16) 2 (6)
P24 173.17 2.797 187.00 5 3 (15) 2 (6)

Table 7.2: LP solutions of the windy CHRISTOFIDES instances.

There are 8 out of 21 instances optimally solved. All of them required less

7.4. COMPUTATIONAL RESULTS 115

than 10 seconds, whereas all but the biggest five ones required less than one
second. The percent ratio between the solution value to the first iteration and
the final one (this is, 100Z0/Zw) is in all cases under a 133%, and in all but
three cases under a 115%.

name Zw tZw Z0 iter con(≤) coc (≤)
D0 91.00 0.047 91.00 0 0 (0) 0 (0) X
D1 0.00 0.031 0.00 0 0 (0) 0 (0) X
D2 110.00 0.031 110.00 0 0 (0) 0 (0) X
D3 91.00 0.062 91.00 0 0 (0) 0 (0) X
D4 0.00 0.032 0.00 0 0 (0) 0 (0) X
D5 198.00 0.031 209.00 1 0 (0) 1 (2) X
D6 97.00 0.032 97.00 0 0 (0) 0 (0) X
D7 0.00 0.062 98.00 3 3 (8) 0 (0) X
D8 254.00 0.094 286.50 3 2 (5) 1 (1) X
D9 51.33 0.187 80.50 2 1 (2) 1 (2)
D10 0.00 0.156 1.00 1 1 (2) 0 (0) X
D11 26.00 1.047 153.00 7 7 (38) 0 (0) X
D12 84.50 0.234 108.00 2 0 (0) 2 (3)
D13 439.50 0.391 479.00 4 4 (12) 0 (0)
D14 399.33 1.750 464.50 9 7 (29) 2 (9)
D15 444.50 0.687 468.50 2 0 (0) 2 (7)
D16 632.50 0.782 699.50 4 1 (4) 3 (4)
D17 727.00 0.594 741.50 1 0 (0) 1 (4)
D18 164.00 2.031 247.00 6 5 (34) 1 (1)
D19 227.00 2.453 278.50 7 5 (26) 2 (2)
D20 64.00 1.813 192.50 6 4 (27) 2 (2)
D21 596.00 4.906 665.50 8 6 (18) 2 (10)
D22 586.00 3.187 658.00 3 2 (13) 1 (10)
D23 596.83 3.985 664.75 7 5 (16) 2 (6)
D24 1072.50 3.625 1079.13 3 1 (2) 2 (7)
D25 844.50 4.234 891.00 3 1 (8) 2 (9)
D26 1134.50 5.063 1266.33 4 2 (4) 2 (17)
D27 110.00 381.516 367.00 63 61 (758) 2 (9)
D28 349.00 42.313 470.50 27 26 (297) 1 (4)
D29 112.50 19.093 200.25 12 11 (112) 1 (1)
D30 758.42 80.125 1077.50 26 23 (157) 3 (17)
D31 971.05 32.578 1089.50 11 8 (52) 3 (20)
D32 615.43 17.891 668.25 5 3 (11) 2 (13)
D33 1402.22 35.422 1464.13 9 5 (27) 4 (27)
D34 1226.00 51.375 1361.25 8 6 (32) 2 (24)
D35 1446.83 11.313 1520.00 2 0 (0) 2 (15)

Table 7.3: LP solutions of the windy DEGREE instances.

The results for the DEGREE instances are shown in Table 7.3. Here we
find 11 optimal solutions. In fact, being optimal seems to be closely related to
the size of the graph. However, as will be seen later, the algorithm finds some
optimal solutions to the biggest instances. Anyway, the number of iterations
is, in general, reasonably small. In all but three cases the problem is solved in

116 CHAPTER 7. THE WINDY CPARP

less than 13 iterations. Attention must be paid to Instance D27, which required
more than five minutes to be solved. However, the same instance already needed
this time when solved as an undirected CPARP. All instances but D27 run in
less than 100 seconds, that are reasonable required times.

For these problems, the percent ratio between the solution value to the first
iteration and the final one is under a 150% in all but three instances, and under
a 133% in all but six of them. Instance D11 might also be considered as a
pathological case, since the value of its first solution is five times the value of
the last one.

In Table 7.4 the values obtained for the RANDOM instances are presented.
There are 16 out of 20 instances optimally solved.

name Zw tZw Z0 iter con(≤) coc (≤)
R0 0.00 0.032 0.00 0 0 (0) 0 (0) X
R1 0.00 0.031 1761.00 1 1 (2) 0 (0) X
R2 0.00 0.031 2988.00 1 1 (2) 0 (0) X
R3 5970.00 0.032 6941.00 1 1 (2) 0 (0) X
R4 7545.00 0.062 10102.00 3 1 (3) 2 (2) X
R5 0.00 0.078 1769.00 1 1 (2) 0 (0) X
R6 5079.00 0.125 5955.50 2 2 (6) 0 (0) X
R7 2958.00 0.063 2958.00 0 0 (0) 0 (0) X
R8 0.00 0.203 7860.00 3 3 (7) 0 (0) X
R9 3574.00 0.250 7384.00 6 3 (10) 3 (3)
R10 2958.00 1.109 8907.00 12 12 (48) 0 (0) X
R11 1597.00 0.172 3499.50 1 1 (2) 0 (0) X
R12 0.00 0.203 7403.00 2 2 (5) 0 (0) X
R13 14068.00 0.453 17773.00 2 2 (7) 0 (0)
R14 11898.00 0.531 12272.50 4 3 (14) 1 (3)
R15 7091.50 1.188 13671.00 6 5 (20) 1 (2)
R16 3733.00 0.407 4733.00 1 1 (4) 0 (0) X
R17 1170.00 0.375 5924.00 2 2 (6) 0 (0) X
R18 6369.00 0.703 15873.00 5 4 (14) 1 (2) X
R19 13067.00 0.422 14132.50 1 0 (0) 1 (2) X

Table 7.4: LP solutions of the windy RANDOM instances.

This is the data set which has given the best results. It seems related to
the variability of the parameters involved. The fact of having a big standard
deviation among the costs of these graphs seems to make easier the decisions
made by the solver. Furthermore, the required times are very satisfactory, in
all but two cases less than one second, which is closely related to the iteration
numbers done, in all but one under 10.

7.4. COMPUTATIONAL RESULTS 117

The results for the 36 instances of the GRID set are depicted in Table 7.5.

name Zw tZw Z0 iter con(≤) coc (≤)
G0 0.00 0.032 1.00 2 2 (5) 0 (0) X
G1 4.00 0.047 4.50 3 3 (12) 0 (0)
G2 3.00 0.047 4.00 2 2 (6) 0 (0) X
G3 9.00 0.062 9.00 0 0 (0) 0 (0) X
G4 8.00 0.031 9.00 2 2 (8) 0 (0)
G5 9.50 0.031 10.50 2 1 (3) 1 (3)
G6 16.00 0.125 17.00 4 2 (5) 2 (5)
G7 9.00 0.063 10.00 3 2 (6) 1 (1) X
G8 10.50 0.078 12.00 4 2 (7) 2 (4)
G9 11.00 0.281 13.00 7 6 (25) 1 (1)
G10 10.50 0.343 12.50 4 3 (23) 1 (2)
G11 16.00 0.250 16.67 2 2 (12) 0 (0)
G12 33.50 1.000 35.50 6 4 (19) 2 (5)
G13 28.25 0.907 30.00 6 5 (16) 1 (3)
G14 32.67 0.688 33.50 3 2 (8) 1 (3)
G15 47.00 1.375 47.50 6 3 (8) 3 (5)
G16 38.22 1.469 40.00 9 6 (23) 3 (10)
G17 44.00 0.844 44.50 3 2 (6) 1 (2) X
G18 28.00 1.016 29.00 4 4 (24) 0 (0)
G19 30.25 2.765 33.00 10 9 (47) 1 (4)
G20 30.00 3.109 32.50 7 6 (50) 1 (2) X
G21 61.50 3.500 64.00 7 4 (20) 3 (11)
G22 63.00 4.609 65.50 7 4 (20) 3 (11)
G23 66.00 3.906 66.00 4 2 (16) 2 (4)
G24 95.50 6.687 96.00 6 2 (5) 4 (13)
G25 80.00 6.312 82.50 9 6 (19) 3 (9)
G26 93.00 6.140 94.50 8 6 (22) 2 (7)
G27 46.00 6.297 48.00 7 6 (67) 1 (4)
G28 60.50 9.437 62.00 9 7 (90) 2 (8)
G29 50.94 16.406 52.50 16 14 (116) 2 (6)
G30 96.25 32.859 97.75 11 8 (57) 3 (12)
G31 101.00 47.015 102.00 15 13 (155) 2 (11)
G32 108.00 13.062 108.50 7 5 (25) 2 (10)
G33 154.50 14.032 155.00 2 0 (0) 2 (8)
G34 145.67 19.047 146.00 4 1 (3) 3 (14)
G35 150.00 10.656 150.00 1 0 (0) 1 (4)

Table 7.5: LP solutions of the windy GRID instances.

Here we have 6 optimal solutions. In general, this data set has become espe-
cially experimental when translating it to the WCPARP. While the guidelines
to construct these windy instances led to many zero costs, additional computa-
tional experiments indicated that a minimum positive threshold of one for the
costs lead to an optimal value of zero for the vast majority of the instances, since
the maximum value for profits is three. This fact should be taken into account
for generating suitable values for the costs and profits for the computational
experiments in future research.

118 CHAPTER 7. THE WINDY CPARP

In global, we can see that as expected, the required cpu time is strongly
related to the number of variables. Even thought, upper bounds for the num-
ber of copies associated with each edge are not large, four as maximum, it is
clear empirically that these new variables, representing the t-th traversals, are
significantly time consuming.

Results are not as good as those obtained for the case of the CPARP. May be
we should recall that these are preliminary results, and that in future research,
new inequalities might be found for reinforcing the formulation. However, we
maintain the number of optimal solutions at the end of the LP algorithm around
33%. Now a total of 41 out of the 118 instances were optimally solved by just
solving the LP relaxation, thus giving integer solution values for the variables.
Moreover, for solving all the instances a total of 1026.562 seconds was required,
which means less than 20 minutes.

Summarizing the tables shown so far for all instances, we think that the
overall results encourage to continue the research on this formulation, besides
the task of creating some heuristic method and the final exact branch and cut
algorithm for solving the WCPARP.

7.4.2 Solving the CPARP with the WCPARP algorithm

The results presented next are from the same data sets used for the CPARP
replicating their costs for transforming them into WCPARP instances. Hence,
for these problems cuv = cvu, ∀uv.

Proceeding this way allowed us to contrast the obtained results against the
old ones obtained with the CPARP algorithm for solving the LP relaxations.
Tables 7.6-7.10 are presented here just for comparing the algorithms of the
WCPARP versus the CPARP. In all of them, column headings are Zw, the
optimal solution value to the relaxation of the WCPARP formulation, followed
by Z∗, the optimal value to the instance, since now we have them available.
Then, under the heading gap, either a X or the gap 100 (Zw − Z∗) / Z∗ is
displayed depending on whether or not the solution to the symmetric WCPARP
instance is optimal. Recall that we know an instance to be optimal either
because the LP solution is integer, or because the fractional value to the LP
solution exceeds in less than one the optimal value of the corresponding solution
in the CPARP. Next column, Zr, has been repeated here from that of the
corresponding column in Tables 6.8-6.12 of the Chapter 6. Finally, both times
tZw

and tZr
corresponding to the required cpu times for solving the WCPARP

and the CPARP linear relaxations respectively, are shown.

When the WCPARP is posed on a symmetric instance (that is, when cuv =
cvu, ∀uv), all dominance relations established for the primitive CPARP become

7.4. COMPUTATIONAL RESULTS 119

valid. Thus, in the solutions listed in Tables 7.6-7.10 there was no edge used
more than twice, and always in these cases, in opposite directions.

name Zw Z∗ gap Zr tZw tZr

ALBAIDAA 5351.00 5179 3.32 5179.00 21.094 5.890
ALBAIDAB 3536.00 3388 4.37 3394.29 46.047 8.672

Table 7.6: WCPARP vs CPARP algorithms for ALBAIDA instances.

For the ALBAIDA data set, the results are shown in Table 7.6. The gaps are
reasonably small. The total amount of required time seems to strongly depend
on the number of variables.

name Zw Z∗ gap Zr tZw
tZr

P01 3.00 3 X 3.00 0.016 0.000
P02 28.00 26 7.69 28.00 0.078 0.047
P03 52.00 48 8.33 47.00 0.469 0.281
P04 33.00 31 6.45 33.00 0.141 0.047
P05 19.00 19 X 19.00 0.078 0.031
P06 47.20 47 0.43 47.00 0.265 0.063
P07 73.00 73 X 73.00 0.282 0.062
P08 74.50 72 3.47 72.00 0.078 0.032
P09 40.00 38 5.26 38.00 0.047 0.015
P10 35.00 35 X 35.00 0.125 0.015
P11 9.00 9 X 9.00 0.015 0.000
P12 8.00 8 X 8.00 0.016 0.000
P13 3.00 3 X 3.00 0.000 0.016
P14 97.80 92 6.30 98.17 1.141 0.234
P15 15.00 15 X 15.00 0.219 0.063
P16 75.50 72 4.86 73.00 0.984 0.297
P17 23.00 20 15.00 22.00 0.203 0.047
P18 1.00 0 0.80 0.594 0.125
P19 49.00 49 X 49.00 0.735 0.157
P20 194.50 182 6.87 189.67 4.594 1.140
P21 223.50 214 4.44 221.00 5.735 0.781
P22 399.50 395 1.14 398.00 4.360 0.797
P23 299.00 295 1.36 298.00 7.406 0.656
P24 173.00 171 1.17 173.00 1.875 0.375

Table 7.7: WCPARP vs CPARP algorithms for CHRISTOFIDES instances.

In Table 7.7 the optimal solution values with the gaps and their required
times can be observed for the CHRISTOFIDES instances. There are 8 optimal
(integer) solutions found when using the WCPARP, and, as in the case of the
CPARP, one more data graph, Instance P18, whose optimality is proven at
this point. Gaps are not so good, and in case of final results it would not be

120 CHAPTER 7. THE WINDY CPARP

acceptable. Note also like in the previous data set, that the required times
for the WCPARP algorithm duplicate at least the times for the CPARP in all
cases except for Instance P13 on which the windy algorithm runs faster than
the undirected one. Also noticeable is the fact for Instance P14 the optimal
value given by the WCPARP algorithm is a better upper bound for the integer
optimal solution than that output by the CPARP. This is, for Instance P14,
Zw < Zr.

name Zw Z∗ gap Zr tZw tZr

D0 109.00 109 X 109.00 0.000 0.032
D1 0.00 0 X 0.00 0.015 0.031
D2 123.00 123 X 123.00 0.031 0.047
D3 109.00 109 X 109.00 0.031 0.062
D4 35.00 35 X 35.00 0.000 0.031
D5 270.00 270 X 270.00 0.016 0.032
D6 115.00 115 X 115.00 0.015 0.046
D7 55.00 55 X 55.00 0.032 0.063
D8 367.00 367 X 367.00 0.015 0.062
D9 80.00 80 X 80.00 0.047 0.312
D10 0.00 0 X 0.00 0.078 0.421
D11 136.00 136 X 136.00 0.235 0.782
D12 121.00 103 17.48 103.00 0.094 0.422
D13 559.00 496 12.70 496.00 0.313 0.328
D14 545.00 545 X 545.00 0.328 1.422
D15 555.50 520 6.83 528.50 0.203 0.906
D16 840.50 783 7.34 801.00 0.328 0.453
D17 902.50 871 3.62 871.00 0.234 0.844
D18 286.00 256 11.72 256.00 0.844 2.453
D19 295.00 282 4.61 282.00 0.250 2.235
D20 180.00 180 X 180.00 0.250 2.047
D21 777.50 768 1.24 768.00 1.266 4.844
D22 755.00 733 3.00 733.00 2.000 7.797
D23 772.00 724 6.63 738.00 1.109 3.718
D24 1295.50 1281 1.13 1281.00 0.516 2.859
D25 1047.50 1011 3.61 1012.60 1.765 5.938
D26 1366.50 1310 4.31 1310.00 0.797 5.391
D27 250.00 241 3.73 241.00 37.797 366.688
D28 497.50 483 3.00 483.00 5.828 37.296
D29 201.21 175 14.98 175.00 7.734 64.313
D30 958.31 883 8.53 933.00 9.485 66.187
D31 1222.50 1195 2.30 1195.80 5.719 29.921
D32 747.00 720 3.75 720.83 9.235 23.250
D33 1642.67 1550 5.98 1567.50 5.781 42.375
D34 1511.50 1436 5.26 1444.00 9.812 49.454
D35 1680.83 1579 6.45 1579.00 5.922 11.454

Table 7.8: WCPARP vs CPARP algorithms for DEGREE instances.

The results obtained for the DEGREE instances are depicted in Table 7.8.
For this bench, the number of optimal solutions obtained with the WCPARP
algorithm is 14.

7.4. COMPUTATIONAL RESULTS 121

Again the comparison between times leads to guess that the factor that cause
a major impact is the number of variables. An important fact that has not been
commented so far is the average difference between both solutions. Indeed, it
is not small, since for some instances the ratio between the solutions with the
WCPARP procedure and the CPARP one is over the 117%. This can not lead
to other conclusion that the specific algorithm for the undirected case is still
useful while no better results with the windy one be obtained. The reason for
this better quality of the undirected procedure must reside in the fact that for
the CPARP we have defined cuts on the x variables, forbidding hereby many
edges to appear in the solutions.

In Table 7.9 the results of the WCPARP and the CPARP algorithm might
be contrasted for the RANDOM data set, in which most of the instances have
been optimally solved.

name Zw Z∗ gap Zr tZw
tZr

R0 0.00 0 X 0.00 0.047 0.016
R1 236.00 236 X 236.00 0.047 0.015
R2 0.00 0 X 0.00 0.062 0.000
R3 8605.00 8605 X 8605.00 0.047 0.016
R4 11206.50 11027 1.63 11027.00 0.031 0.016
R5 0.00 0 X 0.00 0.094 0.016
R6 6681.00 6681 X 6681.00 0.110 0.062
R7 3556.00 3556 X 3556.00 0.078 0.016
R8 1946.50 1132 71.95 1132.00 0.172 0.063
R9 7544.50 7079 6.58 7079.00 0.219 0.078
R10 6025.00 6025 X 6025.00 0.813 0.219
R11 2603.00 2603 X 2603.00 0.172 0.031
R12 0.00 0 X 0.00 0.203 0.016
R13 18398.00 18059 1.88 18059.00 0.547 0.250
R14 18176.00 16944 7.27 17023.75 0.406 0.250
R15 11858.00 10794 9.86 10794.00 1.047 0.375
R16 4544.00 4544 X 4544.00 0.375 0.078
R17 1732.00 1732 X 1732.00 0.359 0.063
R18 14055.00 14055 X 14055.00 0.797 0.125
R19 17958.00 17958 X 17958.00 0.563 0.172

Table 7.9: WCPARP vs CPARP algorithms for RANDOM instances.

As can be seen the number of optimally solved instances with the WCPARP
procedure is 19, as in the case of the CPARP. Certainly the gap values continue
to be not acceptable for all not optimally solved instances. Of course that this
drawback should be addressed in future research.

Finally, for the GRID instances we can compare both algorithms in Ta-
ble 7.10. With this data set 14 optimal solutions have been obtained using the

122 CHAPTER 7. THE WINDY CPARP

windy algorithm, whereas using the other one 21 were optimally solved.

name Zw Z∗ gap Zr tZw tZr

G0 0.00 0 X 0.00 0.016 0.000
G1 0.00 0 X 0.00 0.047 0.015
G2 0.00 0 X 0.00 0.031 0.016
G3 2.00 2 X 2.00 0.094 0.047
G4 0.00 0 X 0.00 0.063 0.031
G5 4.00 4 X 4.00 0.031 0.016
G6 7.00 6 16.67 7.00 0.094 0.031
G7 1.00 1 X 1.00 0.078 0.016
G8 4.00 4 X 4.00 0.047 0.015
G9 1.50 1 50.00 1.00 0.281 0.079
G10 0.00 0 X 0.00 0.422 0.141
G11 3.00 3 X 3.00 0.297 0.093
G12 13.00 13 X 13.00 0.734 0.438
G13 8.87 8 10.88 8.50 0.719 0.172
G14 13.00 13 X 13.00 0.890 0.219
G15 23.00 23 X 23.00 0.984 0.156
G16 15.94 15 6.27 15.50 1.938 0.312
G17 20.00 20 X 20.00 0.860 0.203
G18 6.00 6 X 6.00 1.578 0.375
G19 6.50 5 30.00 6.00 3.047 0.954
G20 9.00 9 X 9.00 6.531 0.813
G21 29.00 29 X 29.00 3.172 1.125
G22 30.00 30 X 30.00 5.469 1.015
G23 29.00 29 X 29.00 6.516 1.625
G24 51.00 50 2.00 50.00 6.141 1.578
G25 39.50 39 1.28 39.00 4.390 1.438
G26 51.00 51 X 51.00 4.469 1.109
G27 13.00 13 X 13.00 17.344 3.906
G28 22.62 21 7.71 22.57 20.328 11.766
G29 13.50 12 12.50 12.33 16.094 5.969
G30 43.50 41 6.10 41.70 19.969 10.187
G31 48.40 48 0.83 48.00 67.781 26.016
G32 49.50 49 1.02 49.33 20.218 5.031
G33 81.00 80 1.25 80.00 15.140 2.329
G34 77.33 76 1.75 76.00 18.766 6.453
G35 80.00 78 2.56 78.00 8.953 5.312

Table 7.10: WCPARP vs CPARP algorithms for GRID instances.

In global, among all the instances, the maximum number of copies for a
given edge has been 4. In average, 1.5. This means that the number of variables
defined, in average, has been the triple for the WCPARP formulation than in
the CPARP. This factor seems to have a determinant impact when comparing
the required times with the case of the undirected CPARP.

Also, the formulation should be reinforced somehow in order to avoid the
gap values found so far for instances not optimally solved.

Chapter 8

Conclusions

In this dissertation we have studied the CPARP. This arc routing problem has
two main characteristics. On the one hand, it is a Prize-collecting Arc Routing
Problem, in which there is a profit function associated with links with demand,
so that when a demand edge is serviced a profit is obtained. On the other hand,
in terms of the components induced by the demand edges, it is required that if a
demand edge is serviced, then all the demand edges in the same component are
also serviced. As it has been explained the CPARP is closely related to other
arc routing problems and, in particular, to the Rural Postman Problem.

In Chapter 3, we have proposed a transformation of the original CPARP into
an equivalent problem defined on a complete graph, and we have studied sev-
eral properties, based on which we have proposed a mathematical programming
formulation for the CPARP. There are several elements specific of the proposed
formulation. On the one hand, it exploits explicitly some dominance relations,
which allow us to reduce the search space to optimal solutions with a specific
structure. On the other hand, the formulation combines binary variables and
continuous variables (within the interval [0, 1]), since we have proven that the
variables that represent the second traversal of an edge can be defined as con-
tinuous ones but will take binary values in optimal solutions. The formulation
contains two families of constraints of exponential size: restrictions that guar-
antee the connectivity with the depot of the serviced components, and cocircuit
inequalities that ensure the even parity of the visited vertices. Therefore, for
making it possible to use this formulation within the context of an LP solver
iterative scheme, in Chapter 4 we have studied the separation problem for both
types of inequalities, and in both cases we have seen that we can solve them
exactly in polynomial time.

In Chapter 4 we have also proposed a branch-and-cut algorithm for obtaining
optimal solutions to the CPARP. At each node of the search tree, the algorithm
combines the iterative solution of the LP relaxation of he problem with a heuris-
tic. The heuristic is a simple one which is based on rounding the obtained LP

123

124 CHAPTER 8. CONCLUSIONS

solution. Despite its simplicity it has outperformed various types of heuristic
that we have also studied in Chapter 5.

To assess the potential of the proposed formulation and the efficiency of the
proposed algorithm in Chapter 6 we report on the results that we have obtained
with a series of computational experiments. Since no benchmark instances were
available for the CPARP we have adapted several families of well known arc
routing instances from the literature. The obtained results indicate that in the
vast majority of the cases the instances can be optimally solved with a small
computational burden. It is quite remarkable that over 75% of the instances
were already optimally solved at the root node of the search tree. Since the RPP
is a particular case of the CPARP, a second series of experiments were oriented
to evaluate the capacity of the proposed formulation for solving classical RPP
instances. The obtained results are quite satisfactory although, as could be
expected, these are not as good as the ones obtained with best existing RPP
specific algorithms in the literature.

In Chapter 7 we have studied the windy version of the CPARP. For this
problem we have proposed two different formulations, the first one based on
general integer variables, and another one with binary variables, resulting from
a transformation to a complete graph similar to that used for the CPARP.
However, not all the properties that held for the CPARP when stated on the
complete graph are also true for the WCPARP. In particular, it is no longer true
that there exists an optimal solution in which no edge is used more than twice.
As a consequence, for formulating the problem using only binary variables it is
required to make several copies of the variables representing the traversal of a
link in one direction. To this end, we have previously obtained an upper bound
on the number of times that an edge can be traversed in a given direction in
an optimal solution. The results of the preliminary computational experiments
indicate the potential of the formulation, although it is clear that a thorough
research on the WCPARP is one of the open lines for future research from this
dissertation.

The Appendix describes the filògrafus which is a visual tool that has been
implemented for working with graphs. It allows to edit graphs and to solve
several graph optimization problems by means of a visual interface. In the
context of this dissertation the filògrafus has been mainly used with CPARP
problems. With respect to the solutions obtained with the iterative LP solver,
the filògrafus is able to display the iterative process step by step. Related to
the heuristic solutions, it is also used as a means of visualizing different options
that the heuristic methods have parameterized. However, given that it is very
versatile and user friendly, the filògrafus has a wide potential of applications,
not only as a visual support tool for research activities, but also for teaching
purposes.

From the research point of view, there are indeed several other aspects re-
lated to this dissertation that deserve further consideration. In the case of the
WCPARP, one of them is the study of the formulation with the general integer
variables and, in particular, the study of valid inequalities for this formulation.

125

The well-known K−C inequalities can be adapted to be valid for the WCPARP,
although an algorithm for separating them must be investigated. Also, given
that cocircuit inequalities cannot be used with this formulation, the study of
valid inequalities to guarantee the parity of the visited nodes deserves special
attention for this formulation.

This dissertation also leaves the door open to the study of other problems.
One of them is the classical RPP. We have seen that our CPARP formulation
is able to solve the RPP instances quite efficiently. Given that it is already
known how to formulate the RPP using only binary variables, it remains to be
studied if there are any additional properties or dominance relations that hold
when formulating the RPP on a complete graph. These could be incorporated
thus leading to a stronger formulation, associated with the problem on the
complete graph. The algorithm could compete with the up to date most efficient
ones. One point that could contribute substantially to this would be to identify
variables whose integrality could be relaxed and could be defined as continuous
ones, similarly to the CPARP.

Finally, we must mention that there are indeed other types of prize-collecting
arc routing problems that remain to be studied. Among them, probably the
most challenging ones are the capacitated versions of the PRPP and the CPARP.
None of these problems have been studied so far in the literature. The first step
would be studying the properties of these two problems, and to see if it is
possible to derive any additional property by formulating them on a complete
graph. Along the line followed in this dissertation, it would be interesting to
formulate these capacitated versions by means of binary variables and to exploit
the potential of cocircuit inequalities. However, it is clear that the capacity
constraints incorporate an additional difficulty to the problems and that it will
be difficult to extend the obtained results. These are clearly avenues for future
research.

Appendix A

The filògrafus Application

In order to test the hypotheses on the instances we have been working on, and
looking forward to handling other graph instances in general, a software has been
developed by the author. It has been called filògrafus: a visual application for
operating with graphs. It consists of a workbench for graphs. Editing tools for
elements (edges and vertices) are provided, as well as mechanisms for attributing
the values involved in the problem. Even though initially the filògrafus had the
purpose of working on several types of problems, the tools supplied for working
on the CPARP have become its central objective. Other programs implemented
as command lines programs are the ones whose results have been presented in
Chapter 6. Along this chapter, these programs are referred to as batch programs.

The general requirement for the filògrafus is to be able to follow the resolution
of a CPARP instance allowing the user to stop and analyze each step. While
batch programs can do not much more that giving the solution values, within the
filògrafus, a problem might be partially solved, analyzed, and solved completely
or not. Solutions can be eliminated at any step, and the process restarted.

This interface application has been built in Microsoft VisualC++ language
to run on a WindowsXP operating system platform. The command line con-
ducted batch programs, without graphical interface and focused on solving the
CPARP have been coded in standard C++ language, facing portability to other
platforms.

Next, a brief description of the database used by the filògrafus is given. Then,
data structures are commented explaining its hierarchical structure in layers.
The main information stored at each layer and its main methods are described.
There is a third section mentioning the policy of working with dynamic link
libraries. Finally, a section tracing the main use case for solving a CPARP step
by step is detailed.

127

128 APPENDIX A. THE FILÒGRAFUS APPLICATION

A.1 Database

The application has knowledge about some routing problems, as the CPP, the
RPP, the PRPP, and its speciality of course, the CPARP. These data structures
are referred to as models. It might result convenient to say that having knowl-
edge of a problem does not imply to know how to solve an instance of it. For
solving a particular instance of a model a dynamic link library for that model
is required.

In order to have the knowledge available, the filògrafus makes use of a simple
database in which there is a list of models and a list of attributes. Also, relating
both lists, there is a crossed relation, called uses. Hence, using Microsoft Access,
the user might define new kinds of problems by associating problems with at-
tributes. In each association the user establishes the domains for each attribute
that uses her or his problem, and other information as the model name, an
explanation (the filògrafus has a didactic spirit), a code, whether or not it re-
quires binary variables, and also whether or not it is stated on a directed graph.
Other machine oriented info is also stored for each problem as is the UID code
for registering the corresponding dynamically link library (dll), as explained in
Section A.3. The associated info for each attribute is its name, whether it is
defined on the edges or on the vertices, and which data type implements it.
The attributes also might exclude other attributes (e.g. in a maxflow problem
there is an attribute associated with the vertices that is sink that excludes the
attribute source). For each attribute a readonly flag is also stored (e.g. flows
can not be given by the user).

A.2 Data Structures

The main program of the filògrafus uses a default data structure consisting of
three different layers.

At the bottom layer there is the kernel object. This object is responsible
of keeping the connectivity information among elements. Its main members
represent the numerical implementation of the graph on which the problem is
posed. That is, the matrix of connections (nodes×nodes) storing the costs of
the edges, and the incidence matrix (edges×nodes). One more squared ma-
trix (nodes×nodes) stores edge identifiers, that at this bottom level are integer
indices. For a kernel object, subsets of edges are implemented as vectors of
edge indices. At this first layer available methods are dijkstra(i,j) (for obtaining
the shortest paths from a vertex i to another j as a vector of indices of edges,
and the corresponding value), min_span_tree() (that also produces a vector
of integer indices to edges as well as the value of the tree), perfect_matching()
(that returns the selection of edges that are the matching solution), and also
maxflow(i,j), (that interprets the costs matrix as capacities).

A.2. DATA STRUCTURES 129

On the second level in the hierarchy there is the graph object class. It is
responsible for the consistency among all the values of the graph and its domains.
Additionally to kernel data, at this level there are two arrays. Vertices and edges.
These arrays are collections of what in turn are data structures that maintain
additional information of each elemental component of the graph. Data as name,
position on the screen, an array of pairs noun-value for the element attributes,
and other info that does not have relationship to the connectivity of the graph.
A subset of edges for a graph is a slightly sophisticated data structure. Also at
the layer of graph we have input/output operations available. This means that
at this level methods need to know the domains for the values of the attributes
in order to detect possible mistakes in the input data files. Therefore, it is
in the graph level where all connections to the external data base are carried
on. The topmost level data structure for general problems is problem.

kernel

e1

e2

em

…

v1

v2

vn

…

model

graph

Ax ≤ b

…

problem

CPARP o
 PRPP o
 RPP o
FLOW o
TRANS o

solver

Figure A.1: Hierarchical data structure used for the generic problem in the filògrafus.

The responsibility of the interaction with the solver is assigned to this level.
The solver used by the filògrafus is GLPK [91], conveniently adapted for this
project. The problem data structure, in addition to all information provided
by the graph, stores the matrix of inequalities of the problem. Observe that at
this level only data structures can be provided, since operations for setting the

130 APPENDIX A. THE FILÒGRAFUS APPLICATION

contents of this matrix (as the initial model or the separation procedures) are
problem dependent, and therefore, are implemented in the particular library for
that model.

A scheme of the data structure of the filògrafus can be seen in Figure A.1.

A.3 Dynamic Link Libraries

Some mechanism must be provided in order to set the specific features for a given
problem. As said above, there is a global unique identifier (GUID) associated
with each model in the database. When the user wishes to work on a new kind
of problem, an executable module must be implemented and registered in the
windows registry. Thus, the executable object is split into as many executable
objects as models that the filògrafus can solve.

Somodels are objects that implement several interfaces. Examples of manda-
tory functions contained in these interfaces are objective_function(), restric-
tions(), separation_of_inequalities() or addition_of_inequalities(). All model-
dependent characteristics of the problem must also be carried on these libraries.
Therefore, the filògrafus itself does not know anything about demand edges or
clusters.

So far, dynamic libraries exist for the CPARP, the PRPP, the RPP, the
MAXFLOW and the TRANSPORTATION problems. Thus, these are the prob-
lems that currently the filògrafus is able to solve.

A.4 Workflow

For illustrating purposes, in this section it is described the interactive process for
solving the LP relaxation of the Christofides instance P02, with the filògrafus.
When the user starts by creating the instance this process is partitioned in three
stages. However, for instances read from a file, the first stage, that consists of
obtaining an operable graph is usually skipped (unless the graph in the file is
disconnected). In order to differentiate among these stages, different keywords
appear in the status bar at the bottom right of the main window.

stage 1 In the first stage the graph is being build. That is, it might be discon-
nected. It might have no defined depot, or it might have no demand edges.
In any case, the instance is considered not operable. Therefore, when the
graph is connected, has some demand edges and a depot vertex, the key-
word operable appears on the status bar indicating so. As said above, this
stage is usually skipped by the files of the workbench.

A.4. WORKFLOW 131

stage 2 These stage goes from having a connected graph with some demand edges
and one depot vertex, to having a complete graph satisfying the triangu-
lar inequality and with all vertices with some demand edge in their cut
set. When all these conditions are accomplished, then the graph is pre-
processed. In fact, the word preprocessat indicates the end of the second
stage.

stage 3 This is the final stage. It deals with solving the CPARP posed by the
graph constructed in the previous stages. On the status bar, appears the
last obtained solution value.

There are two user options for automatically carrying out the second and
three stages. Thus, in order to solve step by step a given instance, we must
uncheck options related to automatic preprocessing and solving. Also, the choice
of solving step by step is assumed to be on.

A.4.1 Obtaining an operable graph

The filògrafus is able to read text files with the description of an edge in each
line. Available files fulfil this format. They are ASCII files without extension.
So, the filògrafus reads files without doing any previous transformation. To
maintain the positions of the vertices in the graph, an auxiliary file is stored for
each instance, with its positions. When opening a file for the first time, vertices
appear in a default layout. By dragging them, the user can place vertices as
desired, and they will be kept for future visualizations of the same graph if
saved.

Once loaded, demand edges appear in bold. Profits and costs can be seen
using the buttons on the main frame menu. Also, clusters can be selected and
their properties shown, as in the screen shot displayed in Figure A.2.

Briefly, the options of the menu bar of Figure A.2 are, from left to right, new
graph, open, save (that saves the positions of the vertices in the screen), about,
(the red circle is an auxiliary button), and then comes the button with the legend
Ax < b for setting the main options for this model. Among them, now we have
chosen that we do not want to preprocess the graph, also that we want to solve
it step by step. Other options under this button are the kind of heuristic we
would use now, or the column headings we want to appear in reports. After that,
there is the button for calculating the minimum spanning tree. The algorithm
used for this is parameterized in the dialog of graph properties not shown in this
example. Next button calculates the minimum weight matching. At its right
side the button (≤ /) is checked, meaning that the instance already fulfils the
triangular inequality. The button for constructing the complete graph follows
with an icon of a graph in green. Note that this one is not checked since the
graph is not complete as can be seen in the status bar.

132 APPENDIX A. THE FILÒGRAFUS APPLICATION

Figure A.2: The instance P02 just loaded. Costs in red, profits in green for demand
edges, in bold. The properties of cluster C3 are shown in the dialog box.

The following four buttons are related to the solutions: optimal (Z∗), relaxed
(X), heuristic (light bulb) and imported (folder in magenta). Observe that given
that the graph is not preprocessed (since it is not complete), the first three are
inhibited. However, at this point we already can import a solution file. This is
shown in Figure A.3, which depicts a solution read from the file named s.set,
as can be seen in the rightmost text of the status bar, with a solution value of
28.00. The next, is the button for eliminating solutions, now inhibited. Finally,
the rightmost checked buttons are so because benefits and costs are shown, but
they will not longer be in the example of this section. Observe the dialog box
window with the properties of C2, colored in red, on the right part.

One can see, on the bottom of the main frame, the status bar that shows
the name of the instance and its sizes on the leftmost part. In this bar, it also
appears the model name, CPARP. And then the status of the solving process.
Given that we are working on a connected graph with some demand edges
already defined, the graph has already skipped to stage 2. In Figures A.2, A.4

A.4. WORKFLOW 133

Figure A.3: LP solution obtained by the batch programs and read from the filògrafus.

and A.5 the status is no complet meaning that there is still some preprocessing
that we have to do (making the graph complete) before achieving the status
of preprocessat. Previous status could have been disconnected or even isolated
vertices, no depot, and no demand edges. In Figure A.3 the status of the process
has been overwritten by the filename and the value of the imported solution:
s.set: 28.00.

Clicking again on the magenta colored folder or deleting the solution read
with the button of the red cross, we turn back to our instance. Now the graph
is only connected. When the problem status becomes preprocessat the buttons
related to solving it become enabled. Even though the graph is not even com-
plete, many operations are already available. The user has many actions that
she or he can perform, in addition to completing the graph. Three examples
of available actions before having a preprocessed problem are depicted in Fig-
ures A.3-A.5. The first example, in Figure A.3, has already been commented.

134 APPENDIX A. THE FILÒGRAFUS APPLICATION

Figure A.4: The minimum spanning tree.

In Figure A.4 the user has calculated the minimum spanning tree. And the
third example illustrates a tool for measuring paths. This tool, shown in Fi-
gure A.5, has resulted very useful for measuring a path between two vertices.
For doing so, we just have to overdraw the path between the two vertices, that
is enlightened as the user drags over a sequence of connected edges.

Other general utilities available to the user for analyzing the graph are not
illustrated here to avoid extending too much this appendix. One of them is
changing values of costs or profits. This turned out to be very interesting when
comparing solutions, and also helps to figure out and make hypothesis when
trying to design some good heuristic. Many buttons that have been hidden in
this presentation for simplicity can be used for an extended variety of actions. In
particular, any of the subsets described in Section 3.2.2 has a button for coloring
edges belonging to it. Also the buttons for drawing odd and even vertices in
different colors have been hidden.

A.4. WORKFLOW 135

Figure A.5: Measuring the attributes of a path.

In fact, no contextual1 menus are going to be shown in this example. With
them, on the elements of the graph we would access to actions as modifying
their values (e.g. the filògrafus can assign the role of the depot to any vertex by
modifying its properties through its contextual menu), and by clicking the right
button on the background we would be able to open the graph properties, the
list of vertices, the list of edges, the matrix of connections among nodes, and
the incidence matrix of the graph. Moreover, this contextual menu allows the
user to see the constraints matrix when the problem is partially or completely
solved. This possibility is interesting when, as in this example, the problem is
solved step by step, since observing the evolution of this matrix is illustrative.

1In Windows operating system contextual menus are pop up menus that unwrap when the
user click on the right button over an object

136 APPENDIX A. THE FILÒGRAFUS APPLICATION

Figure A.6: The completed graph.

A.4.2 Obtaining a preprocessed graph

To continue solving the instance, next action to do is making the graph com-
plete. By clicking on the button with the green graph we obtain the screen shot
displayed in Figure A.6. This figure depicts all the edges of the graph that can
be slightly seen. We can hide the edges that did not belong to the original graph
by clicking again the same button. In fact, they will no longer be shown.

The reader might have noted that we have not talked about one of the
preprocessing actions. The procedure for removing all vertices without demand
in the original graph has not been dealt with, among other things because in
Instance P02 such do not exist. So, the button for this action has not even been
shown. Another action that must be done in the preprocessing is imposing the
triangular inequality. Again, in this example, the property holds on the original
instance, although in this case, the button has been maintained, and checked in
all figures.

A.4. WORKFLOW 137

Once the graph has been transformed into a complete graph, several differ-
ences arise in the application frame window. In Figure A.6 the status bar can be
observed, informing that all preprocessing has been done (preprocessat). Also,
the number of edges in the right part of the status bar has been changed from
33, that was the original number of edges, to 91 = 14*13/2.

One more change has occurred in the menu bar. Now, all kind of solutions
can be obtained. In particular, for this example, we are going to solve the LP
relaxation.

A.4.3 Solving the instance

The user at this point can click on the green X button of the menu. While
solving one instance, the status bar informs of each step done, although with
Instance P02 the user has no time to see these messages. Immediately, the
screen becomes like the picture in Figure A.7.

Now, the dialog boxes that so far have not even been mentioned play a
crucial role. Observing the popup window in Figure A.7 the user might closely
follow the process. In its caption the user can see the notation Zr to recall
that we are watching a solution to an LP relaxation. Then, iteration number
between parenthesis, and the solution value.

Inside the dialog box window of Figure A.7, first observe that on the screen
we have the last tab of this dialog box, entitled CPARP. Next on its left is
entitled arestes2. Clicking on that tab would show a list of the edges in the
solution. Other tabs not even shown are entitled constraints and variables. In
particular, it has turned out to be very interesting to look at the constraints
tab. It shows a list of all constraints already added to the formulation. When
the user clicks on a constraint, 15 or less edges become enlightened, i.e., if the
selected constraint involves less than 15 edges, all of them are emphasized, but
when the constraint affects too many edges (so that if all were enlightened the
user could see nothing), then just a sample of 15 of them are so.

Let us turn back to the CPARP tab of Figure A.7. At the top of the tab,
there ia a message informing about the solution state. It is integer, however,
disconnected. The number of connected components is also shown. There is
also a list headed grumolls3 with an item for each connected component of the
solution containing its set of clusters. By clicking on an item, the corresponding
set of clusters is enlightened. Below the list appears the button that allows the
user to continue solving. The text on it is a plus symbol, meaning that the
filògrafus is going to add inequalities, and the set of clusters that violates the
cut in question. So, we would click on the button labelled + 2 i 3, obtaining

2arestes is the to translation of edges to Catalan
3grumoll has been chosen to translate cluster to Catalan

138 APPENDIX A. THE FILÒGRAFUS APPLICATION

Figure A.7: Solution of the first iteration.

the result of Figure A.8.

In Figure A.8 the result of the second iteration is depicted. As can be
seen, cluster C3 appears in it, although only with z3 = 1/2. This has been
the way that the inequality just added has been satisfied. Now the solution
is no longer integer. At least it is already connected. Nevertheless, it is not
enough connected. With the separation procedure for connectivity inequalities
described in Algorithm 4.3, the filògrafus found that the maxflow that can be
sent from C0 to any cluster of the set of {C1, C2, C3}, that is equal to 1.0, is
smaller than 2*max{z1, z2, z3} = 2 * 1.0. Observe also that in the dialog box of
Figure A.8 there is a text saying how many clusters resulted in the sink segment
of the maxflow solution. There is also the cluster that gave the violated cut C1,
the maximum zk variable value left in the sink segment of the solution (that in
this case coincides with variable z1), and the maxflow that can be sent to the
cluster from the depot, 1. In this example, the resulting text is C1(Z1 = 1)
amb flux 1.

A.4. WORKFLOW 139

Figure A.8: Solution of the second iteration.

Before proceeding to solve the instance, we can get into the detailed process
of the maxflow problem just solved. Observe that in the dialog box of Figure A.8,
next to the button that would allow to continue solving, there is another button
labelled M(V,E). By clicking on it we open the MAXFLOW problem posed
in the separation procedure. Therefore, the aspect of the filògrafus changes
considerably. The screen turns out to look like the one shown in Figure A.9.
The filògrafus has changed its model to MAXFLOW. Also in the status bar,
the name of the current model has been set to MAXFLOW. In the MAXFLOW
model the source vertex is colored in purple, whereas the sink one, in yellow.

In this way we can reproduce the Ford-Fulkerson algorithm implemented
also inside the filògrafus. Batch programs use a static library. Observe that in
Figure A.9 the name of the problem is an internally defined string. Also, the
buttons of the menu bar have changed. This is the menu bar corresponding
to the MAXFLOW model of the filògrafus. Only two new buttons need to be
explained. Starting from the left, the second one that is inhibited in Figure A.9,
shows the flow values (when solved) in cyan, and the third, the button that

140 APPENDIX A. THE FILÒGRAFUS APPLICATION

Figure A.9: Graph Ms of the Algorithm 4.3.

should interest to the user, with three horizontal lines in downward increasing
thickness. This button is used to solve the maxflow problem. With respect to the
graph elements, we have the edges capacities in orange, whose values correspond
to that of Algorithm 4.3 scaled in order to work with integer capacities. There is
also a numerical attribute associated with each vertex (the default MAXFLOW
model has not numerical attributes associated with the vertices). The filògrafus
does not care if we want to add some attribute to a model, provided that it does
not affect the procedures for solving the instances of that model. In fact, the
user can add and remove attributes associated with the elements in the graph
properties dialog box already mentioned. The numbers close to each vertex in
Figure A.9 are the values of the corresponding variables zk (also scaled) in the
solution of Figure A.8. They have no impact on the solution to the maxflow
problem.

At this point the user can solve iteratively the maxflow problem by clicking
the third button on the right of the menu bar. At each iteration an increment

A.4. WORKFLOW 141

of flow is achieved.

Figure A.10: Solution to the maxflow problem of Figure A.9.

Figure A.10 depicts the solution obtained at the first iteration of the maxflow
problem. As can be seen, edge {C0, C1} is thicker, blue, and with a small triangle
indicating the flow direction in the solution. Also the value of this flow appears
in cyan.

Once analyzed the solution of the maxflow problem, we simply close this
window, and the CPARP on which we are working on appears again on the
screen. Now it is time to add the connectivity inequalities found by clicking on
the button labelled + 2, 3 i 4.

The result once added the last connectivity cut is depicted in Figure A.11.
The dialog box indicates the current state. That is, there has been found no

142 APPENDIX A. THE FILÒGRAFUS APPLICATION

Figure A.11: Solution of the third iteration.

more violated connectivity inequalities, and therefore the separation procedure
has proceeded by finding out a new cocircuit inequality to be added to the LP
problem. In fact, there have been found 2. In Figure A.11, the list is labelled
with the word tall4. Thus, items of this list are the edge indices of the cut
sets F ∪ L of Algorithm 4.6. By clicking on one of them, the corresponding
edges get colored in red, and thicker. Since the second item is selected, edges
corresponding to this cut, {d,10}, {9,10} and {10,11} are marked in red in
Figure A.11.

At the bottom of the dialog box window, the button labelled + can be
clicked to add all cocircuit cuts of the list at once. Now the user can continue
solving the problem by clicking this button. The obtained result is displayed in
Figure A.12.

The solution of Figure A.12 satisfies all constraints of the formulation of
4cut in Catalan

A.4. WORKFLOW 143

Figure A.12: Solution of the fourth iteration.

Subsection 4.1.3, the connectivity cuts of Expression 3.11, and all cocircuit cuts
that the heuristic separation algorithm shown in Algorithm 4.6 has been able to
find. Therefore, Algorithm 4.1 can not do anything else to improve the current
solution value.

In Figure A.12, the optimal solution to our formulation is shown. However,
it is unfeasible given that it has fractional values. Thus, the value of 28.00 is the
upper bound that we obtain at the root node of the exploration tree. Observe
also that the solution obtained using the filògrafus, in Figure A.12 coincides
exactly with that calculated by the batch program, shown in Figure A.3.

Agraïments

Aquesta tesi ha estar parcialment financiada pel projecte del Ministerio de
Educación y Ciencia OPTIMOS: Optimización para la Movilidad Sostenible
(MTM2006-14961-C05-01).

Abans que res, i tal com resa en les primeres planes, m’agradaria dedicar
aquest treball a la meva germana Marta Franquesa, que fins no fa massa m’ajudava
en tantes coses. Ella em va fer comprendre què era la continuïtat,

∀ ε > 0, ∃ δ (> 0) | |x− a| < δ → |f(x)− f(a)| < ε.

Llavors, m’agradaria manifestar el deute moral que aquest projecte ha sig-
nificat envers la meva directora Elena Fernández, que m’ha fet passar cinc anys
dels més satisfactoris de la meva vida. També al codirector Julián Aráoz pels
seus punts de vista tan savis. Molt enriquidor ha estat el contacte amb Ángel
Corberán i José María Sanchís, especialment en l’últim capítol. Óscar Meza,
desde lluny, per les dades i el seguiment que n’ha fet. I Maria Albareda per
les seves puntualitzacions. Potser hauria de fer referència a tot el departament
d’EIO de la UPC, però especialment m’agradaria mencionar a Jaume Barceló
pel seu coneixement profund de tantes situacions, Jordi Castro pels seus semi-
naris tan interessants, i Ramon Nonell per la seva paciència a l’hora de fer-me
comprendre les sigma àlgebres i els borelians, que no vaig entendre. Al Toni
Font per la seva destresa amb els usuaris i les contrassenyes, i als companys Di-
ana Cobos, Matteo Tesser, i Marcelo Smrekar, per abraçar-me a l’hora d’agafar
el tren.

M’agradaria també donar les gràcies als companys del departament d’LSI
de la UPC, Conrado Martínez, Maria Teresa Abad, Gabriel Valiente, Amàlia
Duch, Edelmira Passarella i Cristina Zoltán. Treballant amb tots ells he après
moltes coses, sobretot de la complexitat computacional, que també he utilitzat
en aquest projecte.

Als meus companys del departament de MAiA de la UB, Anna Puig, Jesús
Cerquides, Maite López, Josep Maria Bañeras, Oriol Pujol, Jordi Campos, Eloi
Puertas, Daniel del Rio, Maria Salamó, Àngela Fàbregues, Petia Radeva, Jordi

145

146 APPENDIX A. THE FILÒGRAFUS APPLICATION

Vitrià, Inma Rodríquez, Santi Ontañón, David Massip i altra gent del grup de
recerca de Visualització de Volums i Intel.ligència Artificial (WAI). Ells m’han
ajudat en les presentacions plantejant-me els seus dubtes.

Agrair tant com es pugui el suport moral que ha exercit el meu company
Leo Colmena, sense qui tot això no tindria cap sentit. I altres companys de
viatge com en Vicens Palà, d’un coneixement i una sabiduria extraordinàries,
l’Albert Claret, per les seves lliçons sobre l’administració de l’espai en les inter-
fícies, la Isabel Darnell que em controlava els cursos i em parlava dels números
narcisos, en Gepeto per mostrar-me la complexitat a l’hora d’analitzar interac-
cions, l’Oriol Ferrer per il.luminar altres perspectives i l’Enric Santamaria per
dibuixar-les. La Jurdina Conill amb qui compartia les tonades i els ritmes de
totes les freqüències, en Carles Romeu i la Izaskun, com les agulles d’un rellotge
budista, i en Joan Teixidó, en Joan Claret i l’Ester Sancho per ajudar-me a
airejar quan m’encaparrava excessivament. La Marina Navarro per fer-me de
mama i el José María Sánchez per fer-me de fill. En Josep Pi que em deia que
tot té solució, i en Francesc Arnán per com s’omplen els espais buits. I l’Ángel
Bustos i Mohammed Hammouda pels moments més difícils.

I també a les meves altres germanes Mercè per ensenyar-me a lluitar, Núria
per allò de jugar escacs, i Eulàlia per la teoria de conjunts i al meu germà Jaume
per ser el meu germà. Als amics Isidro Alonso, Jordi Roig, Albert Gonzàlez i
Ferran Sanàbria, i als de la seva corda Sara, Laura, Neus, Alba, Pere, Enric,
Ferran, Paula, Júlia, Martina, Carles i Anna. I encara, a la Maria, Blandina,
Fina i Cesca Niubó, que també han estat amb mi sempre que m’ha fet falta.

Moltes gràcies.

Sant Pere de Ribes, a 1 de setembre de 2008

List of Figures

3.1 Example instance. Costs are shown for all edges. Demand edges are
in bold with its profits in light over their costs in dark. 29

3.2 Optimal solution to the PRPP instance of Figure 3.1, with z∗PRPP = 4. 29

3.3 Clusters of the instance of Figure 3.1. 30

3.4 Optimal solution to the CPARP instance of Figure 3.1, servicing clus-
ters C0 and C1, with value z∗CPARP = 3. 30

3.5 An instance of a CPARP with three clusters. Costs are equal to 1 for
all edges. Benefits are shown. 31

3.6 Optimal solution to the CPARP instance of Figure 3.5, servicing clus-
ters C0 and C2, with value z∗CPARP = 3. 31

3.7 Optimal solution to the instance of Figure 3.5 when the problem is
stated on Kn. 33

3.8 Summary of the definition of sets: (a) Instance of CPARP with four
clusters. Demand edges in bold (only the costs are shown); (b) Vertices
D-even in black, vertices D-odd in white, edge set De in solid lines,
Dm in dashed and Do in dotted; (c) Vertices of V0 in white, V1 in light,
V2 in dark and V3 in black, edge set H1 in dotted lines, H2 in solid;
(d) The three edges that define M0. 35

4.1 Flowchart of the solution algorithm. 48

4.2 (a) Instance of a CPARP with three clusters. Demand edges appear in
bold; (b) Unfeasible solution not separated by equations (4.2). Again,
demand edges in bold, and dashed lines mean xe = 1/2. Other frac-
tional variables are yd,7 = 1/2 and z2 = 1/2. 50

147

148 LIST OF FIGURES

4.3 (a) Instance of a CPARP with two clusters. Demand edges appear in
bold; (b) Unfeasible solution not separated with the initial LP formu-
lation. 51

4.4 (a) Instance of a CPARP with three clusters. Demand edges in bold;
(b) Unfeasible solution not separated by Inequalities (4.4). It is servic-
ing clusters C1 and C2 but disconnected from the depot. 52

4.5 Clusters of an instance of a CPARP. 57

4.6 Unfeasible solution Gt = (V t, Et) for the instance of Figure 4.5. . . . 58

4.7 The maxflow problem posed on M t obtained from Gt of Figure 4.6,
with its corresponding solution: edge {C0, C2} in thicker line. 58

4.8 (a) Instance of a CPARP with three clusters; (b) Unfeasible (frac-
tional) solution Gt. 65

4.9 Cuts in Gt of Figure 4.8(b) that do not satisfy cocircuit inequali-
ties (4.11), displayed in light grey thick lines. 65

4.10 Scheme of the enumeration tree. 67

5.1 (a) A cluster. Profits in light, costs in black; (b) The corresponding
set Ce

k with cost c(Ce
k) = 18 and profit pe

k = 1. 70

5.2 Auxiliary graphs defined from the cluster of Figure 5.1 ordered by prof-
its: (a) p(C2,5

k) = 9; (b) p(C2,4
k) = 7; (c) p(C2,3

k) = 6; (d) p(C4,5
k) = 5;

(e) p(C3,5
k) = 4; (f) p(C3,4

k) = 2; 71

5.3 The four possibilities of merging a new cluster Ck in the current so-
lution Gt. (a) The traversal of edge uv in light is substituted by the
cluster Ck through its vertices i and j adding the dashed edges to the
current solution Gt; (b) The traversal of edge uv in light is substituted
by the cluster Ck accessed through the single vertex i twice, introduc-
ing the dashed edges; (c) The cluster Ck is inserted (connecting its
vertices i and j with vertex u), thus inserting the two edges in dashed
lines; (d) Cluster Ck is inserted in the current solution at the vertex
u, introducing twice the edge in dotted line. 72

5.4 Iterations made by the merging-cluster heuristic: (a) G0. Initial solu-
tion equal to Ce

0 . (b) G1. Solution after the first merging (merge-edge-
even). (c) G2. An Optimal solution obtained after de second iteration
(merge-vertex-odd) by merging clusters. 74

5.5 An intermediate heuristic solution to some initial data graph. 77

LIST OF FIGURES 149

7.1 (a) Example instance. Both costs are shown for all edges (the nearest
to a node is its outgoing cost). Demand edges are in bold, with be = 10

for all of them; (b) Optimal directed solution giving service to C2, with
value z∗WCPARP = 36. Only serviced edges in bold. 101

7.2 Optimal solution for the instance of Figure 7.1(a) when the problem is
stated on the complete graph. 104

A.1 Hierarchical data structure used for the generic problem in the filògrafus.129

A.2 The instance P02 just loaded. Costs in red, profits in green for demand
edges, in bold. The properties of cluster C3 are shown in the dialog box. 132

A.3 LP solution obtained by the batch programs and read from the filògrafus.133

A.4 The minimum spanning tree. 134

A.5 Measuring the attributes of a path. 135

A.6 The completed graph. 136

A.7 Solution of the first iteration. 138

A.8 Solution of the second iteration. 139

A.9 Graph Ms of the Algorithm 4.3. 140

A.10 Solution to the maxflow problem of Figure A.9. 141

A.11 Solution of the third iteration. 142

A.12 Solution of the fourth iteration. 143

List of Tables

6.1 Column headings for tables related to the input data graphs. . . . 80

6.2 Main parameters of the ALBAIDA instances. 81

6.3 Main parameters of the CHRISTOFIDES instances. 81

6.4 Main parameters of the DEGREE instances. 82

6.5 Main parameters of the RANDOM instances. 83

6.6 Main parameters of the GRID instances. 84

6.7 Column headings for tables related to the root node of the explo-
ration tree. 85

6.8 LP solutions of the ALBAIDA instances. 86

6.9 LP solutions of the CHRISTOFIDES instances. 86

6.10 LP solutions of the DEGREE instances. 87

6.11 LP solutions of the RANDOM instances. 88

6.12 LP solutions of the GRID instances. 89

6.13 Heuristics solution values for no optimally solved graphs. 90

6.14 Results of the exploration algorithm instances. 92

6.15 Solving the RPP on ALBAIDA instances with the CPARP algo-
rithm. 94

151

152 LIST OF TABLES

6.16 Solving the RPP on CHRISTOFIDES instances with the CPARP
algorithm. 94

6.17 Solving the RPP on DEGREE instances with the CPARP algorithm. 95

6.18 Solving RPP on RANDOM instances with the CPARP algorithm. 96

6.19 Solving the RPP on GRID instances with the CPARP algorithm. 97

7.1 LP solutions of the windy ALBAIDA instances. 114

7.2 LP solutions of the windy CHRISTOFIDES instances. 114

7.3 LP solutions of the windy DEGREE instances. 115

7.4 LP solutions of the windy RANDOM instances. 116

7.5 LP solutions of the windy GRID instances. 117

7.6 WCPARP vs CPARP algorithms for ALBAIDA instances. 119

7.7 WCPARP vs CPARP algorithms for CHRISTOFIDES instances. 119

7.8 WCPARP vs CPARP algorithms for DEGREE instances. 120

7.9 WCPARP vs CPARP algorithms for RANDOM instances. 121

7.10 WCPARP vs CPARP algorithms for GRID instances. 122

Bibliography

[1] D. Ahr and G. Reinelt. New heuristics and lower bounds for the min-
max k-chinese postman problem. In R. Möring and R. Raman, editors,
Algorithms - ESA 2002, 10th Annual European Symposium. Proceedings,
volume 2461 of Lecture Notes in Computer Science, pages 64–74. Springer,
Rome, Italy, 2002.

[2] M. Dell Amico, F. Maffioli, and P.Värbrand. On prize-collecting tours and
the asymmetric traveling salesman problem. International Transactions
on Operations Research, 2(3):297–308, 1995.

[3] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook. The Traveling
Salesman Problem (A Computational Study). Princeton University Press,
2006.

[4] J. Aráoz, W. Cunningham, J. Edmonds, and J. Green-Krotki. Reductions
to 1–matching polyhedra. Networks, 13:455–473, 1983.

[5] J. Aráoz, E. Fernández, and C. Franquesa. The clustered price-collecting
arc routing problem. Graph Optimization Meeting GOM2008, Saint-
Maximim La Sainte Baume, Agosto 2008, 2008.

[6] J. Aráoz, E. Fernández, and C. Franquesa. The clustered prize-collecting
arc routing problem. Transportation Science, -conditionally accepted-,
2008.

[7] J. Aráoz, E. Fernández, and C. Franquesa. The exact solution to the
clustered price-collecting arc routing problem. Conference of the Interna-
tional Federation of Operation Research Societies IFORS 2008, Sandton,
Sudafrica, Julio 2008, 2008.

[8] J. Aráoz, E. Fernández, C. Franquesa, and O. Meza. Prize-collecting arc
routing problems and extensions. ODYSSEUS, 3 Mayo, 2006.

[9] J. Aráoz, E. Fernández, and O. Meza. A simple exact separation al-
gorithm for 2-matching inequalities. Research Report DR-2007/13, EIO
Departament, Technical University of Catalonia (Spain). http://www-
eio.upc.es/∼elena/Reports/DR200713.pdf., 2007.

153

154 BIBLIOGRAPHY

[10] J. Aráoz, E. Fernández, and O. Meza. Solving the price-collecting rural
postman problem. To appear in European Journal of Operational Re-
search, 2008.

[11] J. Aráoz, E. Fernández, and C. Zoltán. The privatized rural postman
problem. Computers and Operations Research, 33:3432–3449, 2006.

[12] A. Assad, B. L. Golden, and W. L. Pearn. The capacitated chinese post-
man problem: Lower bounds and solvable cases. American Journal of
Mathematics and Management Science, 7:63–88, 1987.

[13] A. A. Assad and B. L. Golden. Arc Routing Methods and Applications,
volume 8. Handbooks in Operations Research and Management Science,
1995.

[14] E. Balas. The prize collecting traveling salesman problem. Networks,
19(6):621–636, 1989.

[15] E. Balas. Price collecting traveling salesman problem and its applications.
In G. Gutin and A. Punnen, editors, The Traveling Salesman Problem and
Its Variations. Kluwer Academic Publishers, 2002.

[16] M. O. Ball and M. J. Magazine. Sequencing of insertions in printed circuit
board assembly. Operations Research, 36(2):192–201, 1988.

[17] F. Barahona and M. Grötschel. On the cycle polytope of a binary matroid.
J. Comb. Theory, 40:40–62, 1986.

[18] J.M. Belenguer and E. Benavent. The capacitated arc routing problem:
valid inequalities and facets. Computational Optimization and Applica-
tions, 10:165–187, 1998.

[19] E. L. Beltrami and L. D. Bodin. Networks and vehicle routing for munic-
ipal waste collection. Networks, 4:65–94, 1974.

[20] E. Benavent, V. Campos, N. Christofides, A. Corberán, and E. Mota. An
optimal method for the mixed postman problem. In Thoft-Christiansen,
editor, System Modeling and Optimization. Springer.

[21] E. Benavent, V. Campos, A. Corberán, and E. Mota. Análisis de heurís-
ticos para el problema del cartero rural. Trabajos de Estadistica e Inves-
tigacion Operativa, 36(2):27–38, 1985.

[22] E. Benavent, A. Carrotta, A. Corberán, J.M. Sanchis, and D. Vigo. Lower
bounds and heuristics for the windy rural postman problem. European
Journal of Operational Research, 176:855–869, 2007.

[23] E. Benavent, A. Corberán, E. Piñana, I. Plana, and J.M. Sanchis. New
heuristics for the windy rural postman problem. Computers and Opera-
tions Research, 32:3111–3128, 2005.

[24] E. Benavent, A. Corberán, J.M. Sanchis, and I. Plana. Min-max k-vehicles
windy rural postman problem. Technical Report TR09-2007., 2007.

BIBLIOGRAPHY 155

[25] L.D. Bodin and S.J. Kursh. A computer–assisted system for the routing
and scheduling of street sweepers. Operational Research, 26:525–537, 1978.

[26] P. Brucker. The chinese postman problem for the mixed graph. Lecture
Notes in Computer Science, 100:354–366, 1891.

[27] A. Caprara and M. Fischetti. Branch-and-cut algorithms. In Annotated
Bibliographies in Combinatorial Optimization, page 45Ű64. M. DellŠAm-
ico, F. Maffioli, and S. Martello, Wiley, New York, 1997.

[28] N. Christofides. The optimum traversal of a graph. Omega, 1:719–732,
1973.

[29] N. Christofides. Worst-case analysis of a new heuristic for the traveling
salesman problem. Report 388. GSIA. Carnegie-Mellon University, 1976.

[30] N. Christofides, V. Campos, A. Corberán, and E. Mota. An algorithm for
the rural postman problem. Imperial College Report IC.O.R., 81.5, 1981.

[31] N. Christofides, V. Campos, A. Corberán, and E. Mota. An algorithm for
the rural postman problem on a directed graph. Mathematical Program-
ming Study, 26:155–166, 1986.

[32] G. Clark and J. W. Wright. Scheduling of vehicles from a central depot
to a number of delivery points. Operations Research, 12:568–581, 1964.

[33] A. Corberán, A. Letchford, and J. M. Sanchis. A cutting plane algorithm
for the general routing problem. Mathematical Programming, 90:291–316,
2001.

[34] A. Corberán, R. Marti, and A. Romero. A tabu search algorithm for
the mixed rural postman problem. Computers and Operations Research,
27:183–203, 2000.

[35] A. Corberán, G. Mejía, and J.M. Sanchis. New results on the mixed
general routing problem. Operations Research, 53:363–376, 2005.

[36] A. Corberán, E. Mota, and J.M. Sanchis. A comparison of two different
formulations for arc routing problems on mixed graphs. Computers and
Operations Research, 33:3384–3402, 2006.

[37] A. Corberán, I. Plana, and J.M. Sanchis. Zigzag inequalities: A new
class of facet inducing inequalities for arc routing problems. Mathematical
Programming, 108:79–96, 2006.

[38] A. Corberán, I. Plana, and J.M. Sanchis. A branch and cut algorithm for
the windy general routing problem and special cases. Networks, 49:245–
257, 2007.

[39] A. Corberán, I. Plana, and J.M. Sanchis. The windy general routing
polyhedron: A global view of many arc routing polyhedra. SIAM J. on
Discrete Mathematics, 22:606, 2008.

[40] A. Corberán and J. M. Sanchis. A polyhedral approach to the rural post-
man problem. European Journal Operation Research, 79:95–114, 1994.

156 BIBLIOGRAPHY

[41] A. Corberán and J.M. Sanchis. The general routing problem polyhedron.
facets from the rpp and gtsp polyhedra. European Journal of Operational
Research, 108:538–550, 1998.

[42] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 2001.

[43] G. Cornuèjols, J. Fonlupt, and D. Naddef. The traveling salesman problem
on a graph and some related integer polyhedra. Mathematical Program-
ming, 33:1–27, 1985.

[44] R. Deitch and S. P. Ladany. The one-period bus routing problem: Solved
by an effective heuristic for the orienteering tour problem and improve-
ment algorithm. Operation Research, 127(1):69–77, 2000.

[45] M. Dror. Arc Routing: Theory, Solutions and Applications. Kluwer Aca-
demic Publishers, 2000.

[46] M. Dror and A. Langevin. A generalized traveling salesman problem ap-
proach to the directed clustered rural postman problem. Transportation
Science, 31:187–192, 1997.

[47] J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices.
Journal of Research of the National Bureau of Standards, 69:125–130,
1965.

[48] J. Edmonds and E.L. Johnson. Matching, euler tours and the chinese
postman. Mathematical Programming, 8:88–124, 1973.

[49] H. A. Eiselt, M. Gendreau, and G. Laporte. Arc routing problems, part
ii: The rural postman problem. Operational Research, 43:399–414, 1995.

[50] L. Euler. Solutio problematis ad geometriam situs pertinentis. Commen-
tarii Academiae Petropolitannae, 8:128–140, 1736.

[51] D. Feillet, P. Dejax, and M. Gendreau. The profitable arc tour pro-
blem: Solution with branch and price algorithm. Transportation Science,
39(4):539–552, 2005.

[52] D. Feillet, P. Dejax, and M. Gendreau. Traveling salesman problems with
profits. Transportation Science, 39(2):188–205, 2005.

[53] E. Fernández, R. Garfinkel, O. Meza, and M. Ortega. On the undirected
rural postman problem : Tight bounds based on a new formulation. Op-
erations Research, 51:281–291, 2003.

[54] M. Fischetti, J. Salazar, and P. Toth. The generalized traveling salesman
and orienteering problems. In G. Gutin and A. Punnen, editors, The Trav-
eling Salesman Problem and Its Variations. Kluwer Academic Publishers,
2002.

[55] B. Fleischmann. A cutting plane procedure for the traveling salesman
problem on a road network. European Journal of Operational Research,
21:307–317, 1985.

BIBLIOGRAPHY 157

[56] G. N. Frederickson, M. S. Hecht, and C. E. Kim. Approximation algo-
rithms for some routing problems. SIAM Journal on Computing, 7(2):178–
193, 1978.

[57] G.N. Frederickson. Approximation algorithms for some postman prob-
lems. Journal of ACM, 7:178–193, 1979.

[58] G. Ghiani and G. Laporte. A branch-and-cut algorithm for the undirected
rural postman problem. Mathematical Programming, 87:467–481, 2000.

[59] B.L. Golden and R.T. Wong. Capacitated arc routing problems. Networks,
11:305–315, 1981.

[60] R.E. Gomory and T.C. Hu. Multiterminal network flows. SIAM journal
of Applied Mathematics, 9:551–556, 1961.

[61] P. Greistorfer. Solving mixed and capacitated problems of the chinese
postman. Central European Journal for Operations Research and Eco-
nomics, 3(4):285–309, 1995.

[62] M. Grötschel and O. Holland. A cutting plane algorithm for minimum
perfect 2- matchings. Computing, 39:327Ű344, 1987.

[63] M. Grötschel and M.W. Padberg. Polyhedral Theory. The Traveling Sales-
man Problem: A guided Tour of Combinatorial Optimization. Wiley,
Chichester, 1985.

[64] M. Grötschel and Z. Win. A cutting plane algorithm for the windy post-
man problem. Mathematical Programming, 55:339–358, 1992.

[65] M. Guan. Graphic programming using odd and even points. Chinese
Mathematics, 1:273–277, 1962.

[66] M. Guan. On the windy postman problem. Discrete Applied Mathematics,
9:41–46, 1984.

[67] G. Gutin and A.P. Punnen (eds). The Traveling Salesman Problem and
its variations. Kluwer Academic Publishers, 2002.

[68] J.H. Hamilton. Memorandum respecting a new system of roots of unity:
the icosian calculus. Philosophical Magazine, 12:446, 1856.

[69] A. G. Hertz, P. Laporte, and H. Nanchen. Improvement procedures for
the undirected rural postman problem. INFORMS J.Comput., 1:53–62,
1999.

[70] C. Hierholzer. On the possibility of traversing a line system without rep-
etition or discontinuity. Mathematische Annalen, 6:30–32, 1873.

[71] R. Hirabayashi, Y. Saruwatari, , and N. Nishida. Tour construction algo-
rithm for the capacitated arc routing problems. Asia Pacific Journal of
Operational Research, 9(2):155–175, 1992.

158 BIBLIOGRAPHY

[72] M. Jünger, G. Reinelt, , and G. Rinaldi. Handbook in operations re-
search and management science: Net- work models. In M. O. Ball, T. L.
Magnanti, C. L. Monma, and G. L. Nemhauser, editors, The traveling
salesman problem. Elsevier, 1995.

[73] L.R. Ford Jr. and D.R. Fulkerson. Maximal flow through a network.
Canadian Journal of Mathematics, 8:399–404, 1956.

[74] R.M. Karp. Reducibility among combinatorial problems. Complexity of
Computer Computations, pages 85–103, 1972.

[75] T.P. Kirkman. On the representation of polyhedra. Philosophical Trans-
actions of the Royal Society of London Ser. A, 146:413–418, 1856.

[76] G. Laporte. Modelling and solving several classes of arc routing prob-
lems as traveling salesman problems. Computers & Operations Research,
24(11):1057–1061, 1997.

[77] G. Laporte, H. Mercure, and Y. Norbert. Finding the hamiltonian circuit
through n clusters. Congr. Numer., 48:227–290, 1985.

[78] G. Laporte, H. Mercure, and Y. Norbert. Generalized traveling sales-
man problem through n sets of nodes: The asymmetrical case. Discrete
Applications Mathematics, 18:185–197, 1987.

[79] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. The
Traveling Salesman Problem. Wiley-Interscience, 1985.

[80] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Khan, and D.B. Shmoys. The
Traveling Salesman Problem: A Guided Tour of Combinatorial Optimiza-
tion. John Wiley, 1985.

[81] J.K. Lenstra and A.H.G. Rinnooy Kan. On general routing problem.
Networks, 6:273–280, 1976.

[82] A. N. Letchford. New inequalities for the general routing problem. Euro-
pean Journal of Operational Research, 96:317–322, 1997.

[83] A. N. Letchford. The general routing polyhedron: A unifying framework.
European Journal of Operational Research, 112:122–133, 1999.

[84] A. N. Letchford and R. W. Eglese. The rural postman problem with
deadline classes. European Journal of Operational Research, 105:390–400,
1998.

[85] A.N. Letchford, G. Reinelt, and D.O. Theis. A faster exact separation al-
gorithm for blossom inequalities. Integer Programming and Combinatorial
Optimization 10, 3064 of LNCS:196–205, 2004.

[86] G. Reinelt M. Jünger and S. Thienel. Practical problem solving with cut-
ting plane algorithms in combinatorial optimization. In L. Lovász W. Cook
and P. Seymour, editors, Combinatorial Optimization, DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, page 111Ű152.
Providence, 1995.

BIBLIOGRAPHY 159

[87] E. Minieka. The chinese postman problem for mixed networks. Manage-
ment Science, 25(7):643–648, 1979.

[88] E. Noon and J.C. Bean. A lagrangean based approach to the asymmetric
generalized traveling salesman problem. Operations Research, 39:623–632,
1991.

[89] E. Noon and J.C. Bean. An efficient transformation of the generalized
traveling salesman problem. INFOR, 31:39–44, 1993.

[90] Y. Norbert and J. Picard. An optimal algorithm for the mixed chinese
postman problem. Networks, 27(2):95–108, 1996.

[91] GNU open software. Gnu linear programming kit (glpk). reference manual.
Version 4.8, 2005.

[92] C. C. Orloff. A fundamental problem in vehicle routing. Networks, 4:35–
64, 1974.

[93] M. Padberg and M.R. Rao. Odd minimum cut-sets and b-matchings.
Mathematics of Operations Research, 1982.

[94] M. Padberg and G. Rinaldi. Facet identification for the symmetric trav-
eling salesman polytope. Mathematical Programming, 47:219–257, 1990.

[95] C. H. Papadimitriou. On the complexity of edge traversing. Journal of
the ACM, 23:544–554, 1976.

[96] W. L. Pearn. Solvable cases of the k-person chinese postman problem.
Operations Research Letters, 16(4):241–244, 1994.

[97] W. L. Pearn, A. Assad, and B. L. Golden. Transforming arc routing into
node routing problems. Computers & Operations Research, 14(4):285–288,
1987.

[98] W. L. Pearn and C. M. Liu. Algorithms for the chinese postman problem
on mixed networks. Computers & Operations Research, 22(5):479–489,
1995.

[99] I. Plana. El problema general de rutas con viento. PhD thesis, Universat
de València, Spain, 2005.

[100] B. Raghavachari and J. Veerasamy. Approximation algorithms for the
mixed chinese postman problem. In E. A. Boyd R. E. Bixby and R. Z. Rios-
Mercado, editors, Integer Programming and Combinatorial Optimization,
6th International IPCO Conference, volume 1412 of Lecture Notes in Com-
puter Science, pages 169–179. Springer, Houston, Texas, 1998.

[101] A. Romero. On mixed rural postman problem (in spanish). PhD thesis,
University of Valencia, 1997.

[102] M. Sanchis. El poliedro del problema del cartero rural. PhD thesis, Uni-
versidad de Valencia, Spain, 1990.

[103] A. Schrijver. Min-Max results in Combinatorial Optimization. Mathemat-
ical Programming- The State of the Art. Springer, Heidelberg, 1983.

160 BIBLIOGRAPHY

[104] P. Toth and D. Vigo. The Vehicle Routing Problem. SIAM Monographs
on Discrete Mathematics and Applications, 2002.

[105] S. A. Welz. Optimal solutions for the capacitated arc routing problem
using integer programming. PhD thesis. University of Cincinnati, 1994.

[106] Z. Win. Contributions to routing problems. PhD thesis, University of
Augsburg, 1987.

[107] Z. Win. On the windy postman problem in eulerian graphs. Mathematical
Programming, 44:97–112, 1989.

